Контакты

Вращающееся магнитное поле. Магнитный двигатель своими руками сделать возможно

Сегодня для вас очередной эксперимент, который, надеемся, заставит вас задуматься. Это динамическая левитация в магнитном поле. В этом случае один кольцевой магнит располагается над таким-же, но большим по размеру. Продаются магниты дешевле в этом китайском магазине .

Это типичный левитрон, который уже был ранее показан (материал ). Большой магнит и маленький. Они направлены друг к другу одноименными полюсами, соответственно отталкиваются, за счет этого и происходит левитация. Присутствует, естественно, магнитная впадина, или потенциальная яма, в которую верхний магнитик садится. Другой момент, это то, что он вращается за счет гироскопического момента, он какое-то время не переворачивается, пока у него скорость не снизится.

В чем замысел эксперимента?

Если мы вращаем волчок только для того, чтобы он не перевернулся, возникает вопрос. А зачем? Если можно взять какую-то спицу, например, деревянную. К ней жестко прикрепить верхний магнитик, а снизу повесить грузчик расположить эту конструкцию над вторым. Таким образом он тоже по идее должен висеть, а нижний грузик не будет давать ему переворачиваться.

Нужно будет очень точно выставить баланс массы этого волчка. Получилось бы магнитная левитация без затрат энергии.

Как это устроено?

Вот кольцевой магнит, в него жестко вставлена деревянная спица. Далее пластинка из пластика с отверстием для стабилизации спицы. И на конце – грузик. Кусочек пластилина для более удобной регулировки подбора массы. Можно откусывать по чуть-чуть и подобрать такую массу всей этой конструкции, чтобы маленький кольцевой магнитик попадал четко в зону левитации.

Давайте его аккуратно поместим внутрь нижнего магнита, он как бы зависает. Кусочком оргстекла можно попытаться стабилизировать его положение. Но вот стабилизации по горизонтали это ему почему-то не придает.

Если убрать пластинку и вернуть все обратно, то магнитик вместе с осью, на которой он покоится, будет сваливаться вбок. Когда он вращается, он почему-то в магнитной яме стабилизируется. Хотя, обратите внимание, при этом вращении он двигается со стороны в сторону, наверное, миллиметров на пять. Точно также он колеблется и в вертикальном положении сверху вниз. Создается такое впечатление, что это магнитная яма имеет определенный люфт. Стоит верхнему магниту попасть в яму, оне его захватывает и удерживает. Остается лишь гироскопическим моментом добиться того, чтобы этот магнит не переворачивался.

В чем была суть эксперимента?

Проверить, если мы сделаем показанную конструкцию с осью, она фактически она выполняет тоже самое, не давая магниту перевернуться. Она выводит его в зону потенциальной ямы, мы подбираем вес этой конструкции. Магнитик находится в яме, но, попадая в нее, почему-то не стабилизируется по горизонтали. Все равно это конструкция сваливается в сторону.

Проведя этот эксперимент, возникает главный вопрос: почему же такая несправедливость, когда этот магнит как волчок вращается, он зависает в потенциальной яме, все отлично стабилизируется и захватывается; а когда создаются те же условия, все тоже самое, то есть масса и высота, яма как будто пропадает. Он просто выталкивается.

Почему нет стабилизации верхнего магнита?

Предположительно, это происходит потому, что невозможно сделать магниты идеальными. Как по форме, так и по намагниченности. Поле имеет какие-то изьяны, перекосы и поэтому в нем не могут два наших магнита найти равновесное состояние. Они обязательно будут соскальзывать, поскольку между ними нет трения. А при вращении левитрона поля как бы сглаживаются, верхняя часть конструкции не успевает при вращении сойти в сторону.

Это понятно, но что мотивировало автора видео сделать этот эксперимент, это наличие потенциальной ямы. Была надежда, что у этой ямы есть какой-то запас прочности для удержания конструкции. Но, увы, этого почему-то не произошло. Хотелось бы почитать ваше мнение об этой загадке.

Есть еще материал на эту тему.

Под ВМП (Вращающееся Магнитное Поле) подразумевается то поле, градиент магнитного возбуждения которого, не меняясь по модулю, циркулирует со стабильной угловой скоростью.

Наглядный пример

Практическое действие магнитных полей поможет продемонстрировать установка, собранная в домашних условиях. Это вращающийся диск из алюминия, закрепленный на неподвижном импосте.

Если поднести к нему магнит, то можно убедиться, что он не увлекается за магнитом, то есть не намагничивается. Но, если разместить в непосредственной близи вращающийся магнит, то это вызовет неизбежное вращение алюминиевого диска. Почему?

Ответ может показаться простым – вращение магнита вызывают вихревые воздушные потоки, раскручивающие диск. Но все, на самом деле иначе! Поэтому, для доказательства, между диском и магнитом устанавливается органическое или обычное стекло. И, тем не менее, диск вращается, увлекаясь вращением магнита!

Причина в том, что при перемене магнитного поля (а вращающийся магнит именно его и создает) появляется ЭДС (электрическая движущая сила) возбуждения (индукции) , которое способствует возникновению электротоков в алюминиевом диске, обнаруженные впервые физиком А. Фуко (чаще всего их так и называют «токи Фуко») . Появившиеся в диске токи, своим влиянием создают свое, отдельное магнитное поле. А взаимодействие двух полей, вызывает их противодействие и спин алюминиевого диска.

Принцип работы электродвигателя

Проведенный эксперимент порождает вопрос – можно ли без вращения магнита, но с использованием природы переменного тока создать ВМП? Ответ – да, можно! На этом физическом законе построена целая отрасль электротехнического оборудования, в том числе электродвигатели.

Для этого можно взять четыре катушки и расположить их попарно, под 900 относительно друг друга. Затем подавать переменный ток, посменно на одну, а затем на другую пару катушек, но уже через конденсатор. В этом случае на второй паре катушек напряжение сдвинется касательно тока на π/2. Так образуется двухфазный ток.

Если на одной паре катушек нулевое напряжение – магнитное поле отсутствует. На второй паре, в это время напряжение пиковое и МП (магнитное поле) максимально. Попеременное подключение и отключение катушек будет создавать ВМП с изменением направления и постоянной величиной. По сути, был создан электродвигатель, тип которого называется однофазным конденсаторным.

Как создаются трехфазные токи?

Они протекают по четырехжильным проводам. Один играет роль нулевого, а по трем другим подается синусоидальный ток с фазовым сдвигом на 120º. Ели по тому же принципу расположить три обмотки на одной оси под углом 120º и подать на них ток из трех фаз, то результатом будет возникновение трех магнитных вращающихся полей или принцип трехфазного электродвигателя.

Практическое применение

Подача электрического тока по трем фазам, наиболее широко распространена в промышленности, как эффективный способ трансляции энергии. Двигатели и генераторные установки, приводимые в движение трехфазным током, более надежны в эксплуатации, чем однофазные. Их простота в использовании, обусловлена отсутствием необходимости строгой регулировки постоянной частоты вращения, а так же достижение большей мощности.

Тем не менее, двигатели такого типа можно использовать не во всех случаях, так как их обороты зависят от частоты вращения магнитного поля, которое составляет 50Гц. При этом отставание скорости оборотов двигателя, должно быть меньше от вращения магнитного поля вдвое, так как в противном случае не появится эффект магнитного возбуждения. Корректирование скорости вращения ротора электрического двигателя, возможно только при постоянном токе, с помощью реостата.

По этой самой причине трамваи и троллейбусы оснащены двигателями постоянного тока, с возможностью управления частотой вращения. Этот же принцип управления используется на электропоездах, где напряжение переменного тока, в силу перемещения тысячетонных грузов, соответствует 28000V. Преобразование переменного тока в постоянный, происходит за счет выпрямителей, которые и занимают большую часть электровоза.

Все же коэффициент полезного действия в асинхронных двигателях переменного электрического тока достигает 98%. Стоит, так же отметить, что ротор такого двигателя переменного тока состоит из немагнитного материала с преобладающей алюминиевой составляющей. Причина в том, что токи, лучше всего вызывают эффект индукции магнитного поля, именно в алюминии. Пожалуй, единственным ограничением в использовании трехфазного двигателя, является нерегулируемая величина количества оборотов. Но с этой задачей справляются добавочные механизмы такие, как вариаторы или коробки передач. Правда, это ведет к удорожанию агрегата, как и в случае с использованием выпрямителя и реостата для двигателя постоянного тока.

Вот таким образом занимательная физика, вращающееся магнитное поле в частности, помогает человечеству создавать двигатели, и не только, для более комфортного нашего существования.

Электрогравитация это просто

Вступление. В статье описана простейший генератор электрогравитации способный как уменьшай свой вес так и увеличивать. На сегодняшний день рабочая установка способна изменять вес в весьма маленьком диапазоне до 50 % от изначального веса. Поэтому даны рекомендации по ее доработке. Опыты Сергея Година и Василия Рощина Два российских физика создали очень интересный генератор. По факту это постоянные магниты помещенные в специальный диск с полостями для магнитов. При вращении "диска с магнитами" по часовой стрелке вес генератора уменьшался, а при вращении против часовой стрелки уменьшался.



Ученые ставят опыт ы но никаких теорий своим экспериментам пока не предлагают.



Все их опыты свелись к тому, что ученые изменяют скорость вращения и наблюдают за изменением веса. По их данным вес уменьшался до 50 % Летающая тарелка, это просто. На первый взгляд усилить антигравитационный эффект можно просто быстрее раскрутив "барабан" с магнитами. Увы центробежные силы просто разорвут барабан. Что и наблюдали экспериментаторы. Поэтому первый шаг это кроме основного электродвигателя поставить небольшой электродвигатель на каждый магнит. Диаметр каждого магнита много меньше целого барабаны и сама по себе конструкция отдельно взятого магнита прочнее сборного "барабана" поэтому и раскрутить каждый магнит по отдельности можно до больших скоростей.



А усилить дополнительно антигравитационный эффект можно за счет добавления новых способных вращаться магнитов оснащенных мини электродвигателями. Второй шаг, следует

, заменить в "барабане" постоянные магниты на электромагниты. Что такое постоянный магнит? По сути это набор кольцевых токов таких себе маленьких электромагнитиков "вшитых" в тело магнита.



Текущих в одной плоскости . Таким образом мы можем все магниты в барабане Рощина Погодина заменить на электромагниты. И подать к ним напряжение, через скользящие или жидкие контакты и раскрутить при помощи отдельных мини электромагнитных двигателяей.



Вот и все устройство "летающей тарелки" согласно опытам Рощина Година и двум описанным в статье электромагнитным парадоксам. Хотим увеличения веса, вращаем электромагниты и "барабан" в одну сторону хотим уменьшения веса крутим в другую. Далее надо отметить очень инт е ресный факт , обнаруженный физиками, это охлаждение магнитов . То же самое обнаружил и Серл в своих экспериментах . Это позволит избежать вероятного перегрева электромагнитных катушек. Литература -7- Экспериментальное исследование нелинейных эффектов в динамической магнитной системе Владимир РОЩИН , Сергей ГОДИН

Эта статья посвящена рассмотрению моторов, работающих на постоянных магнитах, с помощью которых предпринимаются попытки получить КПД>1 путем изменения конфигурации схемы соединений, схем электронных переключателей и магнитных конфигураций. Представлено несколько конструкций, которые можно рассматривать в качестве традиционных, а также несколько конструкций, которые представляются перспективными. Надеемся, что эта статья поможет читателю разобраться в сущности данных устройств перед началом инвестирования подобных изобретений или получением инвестиций на их производство. Информацию о патентах США можно найти на сайте http://www.uspto.gov .

Введение

Статья, посвященная моторам, работающим на постоянных магнитах, не может считаться полной без предварительного обзора основных конструкций, которые представлены на современном рынке. Промышленные моторы, работающие на постоянных магнитах, обязательно являются двигателями постоянного тока, так как используемые в них магниты постоянно поляризуются перед сборкой. Многие щеточные моторы, работающие на постоянных магнитах, подключаются к бесщеточным электродвигателям, что способно снизить силу трения и изнашиваемость механизма. Бесщеточные моторы включают в себя электронную коммутацию или шаговые электромоторы. Шаговый электромотор, часто применяемый в автомобильной промышленности, содержит более длительный рабочий вращающий момент на единицу объема, по сравнению с другими электромоторами. Однако обычно скорость подобных моторов значительно ниже. Конструкция электронного переключателя может быть использована в переключаемом реактивном синхронном электродвигателе. В наружном статоре подобного электродвигателя вместо дорогостоящих постоянных магнитов используется мягкий металл, в результате чего получается внутренний постоянный электромагнитный ротор.

По закону Фарадея, вращающий момент в основном возникает из-за тока в обкладках бесщеточных двигателей. В идеальном моторе, работающем на постоянных магнитах, линейный вращающий момент противопоставлен кривой частоты вращения. В моторе на постоянных магнитах конструкции как внешнего, так и внутреннего ротора являются стандартными.

Чтобы обратить внимание на многие проблемы, связанные с рассматриваемыми моторами, в справочнике говорится о существовании «очень важной взаимосвязи между моментом вращения и обратной электродвижущей силой (эдс), чему иногда не придается значения». Это явление связано с электродвижущей силой (эдс), которая создается путем применения изменяющегося магнитного поля (dB/dt). Пользуясь технической терминологией, можно сказать, что «постоянная вращающего момента» (N-m/amp) равняется «постоянной обратной эдс» (V/рад/сек). Напряжение на зажимах двигателя равняется разности обратной эдс и активного (омического) падения напряжения, что обусловлено наличием внутреннего сопротивления. (Например, V=8,3 V, обратная эдс=7,5V, активное (омическое) падение напряжения=0,8V). Этот физический принцип, заставляет нас обратиться к закону Ленца, который был открыт в 1834г., через три года после того, как Фарадеем был изобретен униполярный генератор. Противоречивая структура закона Ленца, также как используемое в нем понятие «обратной эдс», являются частью так называемого физического закона Фарадея, на основе которого действует вращающийся электропривод. Обратная эдс - это реакция переменного тока в цепи. Другими словами, изменяющееся магнитное поле естественно порождает обратную эдс, так как они эквивалентны.

Таким образом, прежде чем приступать к изготовлению подобных конструкций, необходимо тщательно проанализировать закон Фарадея. Многие научные статьи, такие как «Закон Фарадея - Количественные эксперименты» способны убедить экспериментатора, занимающегося новой энергетикой, в том, что изменение, происходящее в потоке и вызывающее обратную электродвижущую силу (эдс), по существу равно самой обратной эдс. Этого нельзя избежать при получении избыточной энергии, до тех пор, пока количество изменений магнитного потока во времени остается непостоянным. Это две стороны одной медали. Входная энергия, вырабатываемая в двигателе, конструкция которого содержит катушку индуктивности, естественным образом будет равна выходной энергии. Кроме того, по отношению к «электрической индукции» изменяемый поток «индуцирует» обратную эдс.

Двигатели с переключаемым магнитным сопротивлением

При исследовании альтернативного метода индуцированного движения в преобразователе постоянного магнитного движения Эклина (патент № 3,879,622) используются вращающиеся клапаны для переменного экранирования полюсов подковообразного магнита. В патенте Эклина №4,567,407 («Экранирующий унифицированный мотор- генератор переменного тока, обладающий постоянной обкладкой и полем») повторно высказывается идея о переключении магнитного поля путем «переключения магнитного потока». Эта идея является общей для моторов подобного рода. В качестве иллюстрации этого принципа Эклин приводит следующую мысль: «Роторы большинства современных генераторов отталкиваются по мере их приближения к статору и снова притягиваются статором, как только минуют его, в соответствии с законом Ленца. Таким образом, большинство роторов сталкиваются с постоянными неконсервативными рабочими силами, и поэтому современные генераторы требуют наличия постоянного входного вращающего момента». Однако «стальной ротор унифицированного генератора переменного тока с переключением потока фактически способствует входному вращающему моменту для половины каждого поворота, так как ротор всегда притягивается, но никогда не отталкивается. Подобная конструкция позволяет некоторой части тока, подведенного к обкладкам двигателя, подавать питание через сплошную линию магнитной индукции к выходным обмоткам переменного тока…» К сожалению, Эклину пока не удалось сконструировать самозапускающуюся машину.

В связи с рассматриваемой проблемой стоит упомянуть патент Ричардсона №4,077,001, в котором раскрывается сущность движения якоря с низким магнитным сопротивлением как в контакте, так и вне его на концах магнита (стр.8, строка 35). Наконец, можно привести патент Монро №3,670,189, где рассматривается схожий принцип, в котором, однако, пропускание магнитного потока игается с помощью прохождения полюсов ротора между постоянными магнитами полюсов статора. Требование 1, заявленное в этом патенте, по своему объему и детальности кажется удовлетворительным для доказательства патентоспособности, однако, его эффективность остается под вопросом.

Кажется неправдоподобным, что, являясь замкнутой системой, мотор с переключаемым магнитным сопротивлением способен стать самозапускающимся. Многие примеры доказывают, что небольшой электромагнит необходим для приведения работы якоря в синхронизированный ритм. Магнитный двигатель Ванкеля в своих общих чертах может быть приведен для сравнения с представленным типом изобретения. Патент Джаффе №3,567,979 также может использоваться для сравнения. Патент Минато №5,594,289, подобный магнитному двигателю Ванкеля, является достаточно интригующим для многих исследователей.

Изобретения, подобные мотору Ньюмана (патентная заявка США №06/179,474), позволили обнаружить тот факт, что нелинейный эффект, такой как импульсное напряжение, благоприятен для преодоления эффекта сохранения силы Лоренца по закону Ленца. Кроме того, сходным является механический аналог инерциального двигателя Торнсона, в котором используется нелинейная ударная сила для передачи импульса вдоль оси перпендикулярно плоскости вращения. Магнитное поле содержит момент импульса, который становится очевидным при определенных условиях, например, при парадоксе диска Фейнмана, где он сохраняется. Импульсный способ может быть выгодно использован в данном моторе с магнитным переключаемым сопротивлением, при условии, если переключение поля будет производиться достаточно быстро при стремительном нарастания мощности. Тем не менее, необходимы дополнительные исследования по этой проблеме.

Наиболее удачным вариантом переключаемого реактивного электромотора является устройство Гарольда Аспдена (патент №4,975,608), который оптимизирует пропускную способность входного устройства катушки и работу над изломом B-H кривой. Переключаемые реактивные двигатели также объясняются в .

Мотор Адамса получил широкое признание. Например, в журнале Nexus был опубликован одобрительный отзыв, в котором это изобретение называется первым из когда-либо наблюдавшихся двигателей свободной энергии. Однако работа этой машины может быть полностью объяснена законом Фарадея. Генерация импульсов в смежных катушках, приводящих в движение намагниченный ротор, фактически происходит по той же схеме, что и в стандартном переключаемом реактивном моторе.

Замедление, о котором Адамс говорит в одном из своих Интернет сообщений, посвященных обсуждению изобретения, может объясняться экспонентным напряжением (L di/dt) обратной эдс. Одним из последних добавлений к этой категории изобретений, которые подтверждают успешность работы мотора Адамса, является международная патентная заявка №00/28656, присужденная в мае 2000г. изобретателям Бритс и Кристи, (генератор LUTEC). Простота этого двигателя легко объясняется наличием переключаемых катушек и постоянного магнита на роторе. Кроме того, в патенте содержится пояснение о том, что «постоянный ток, подводимый к катушкам статора, производит силу магнитного отталкивания и является единственным током, подводимым снаружи ко всей системе для создания совокупного движения…» Хорошо известным является тот факт, что все моторы работают по этому принципу. На странице 21 указанного патента содержится объяснение конструкции, где изобретатели выражают желание «максимизировать воздействие обратной эдс, которое способствует поддержанию вращения ротора/якоря электромагнита в одном направлении». Работа всех моторов данной категории с переключаемым полем направлена на получение этого эффекта. Рисунок 4А, представленный в патенте Бритс и Кристи, раскрывает источники напряжения «VA, VB и VC». Затем на странице 10 приводится следующее утверждение: «В это время ток подводится от источника питания VA и продолжает подводиться, пока щетка 18 не перестает взаимодействовать с контактами с 14 по 17». Нет ничего необычного в том, что эту конструкцию можно сравнить с более сложными попытками, ранее упомянутыми в настоящей статье. Все эти моторы требуют наличия электрического источника питания, и ни один из них не является самозапускающимся.

Подтверждает заявление о том, что была получена свободна энергия то, что работающая катушка (в импульсном режиме) при прохождении мимо постоянного магнитного поля (магнита) не использует для создания тока аккумуляторную батарейку. Вместо этого было предложено использовать проводники Вейганда , а это вызовет колоссальный Баркгаузеновский скачок при выравнивании магнитного домена, а импульс приобретет очень четкую форму. Если применить к катушке проводник Вейганда, то он создаст для нее достаточно большой импульс в несколько вольт, когда она будет проходить изменяющееся внешнее магнитное поле порога определенной высоты. Таким образом, для этого импульсного генератора входная электрическая энергия не нужна вовсе.

Тороидальный мотор

По сравнению с существующими на современном рынке двигателями, необычную конструкцию тороидального мотора можно сравнить с устройством, описанным в патенте Лангли (№4,547,713). Данный мотор содержит двухполюсный ротор, расположенный в центре тороида. Если выбрана однополюсная конструкция (например, с северными полюсами на каждом конце ротора), то полученное устройство будет напоминать радиальное магнитное поле для ротора, использованного в патенте Ван Гила (№5,600,189). В патенте Брауна №4,438,362, права на который принадлежат компании Ротрон, для изготовления ротора в тороидальном разряднике используются разнообразные намагничивающиеся сегменты. Наиболее ярким примером вращающегося тороидального мотора является устройство, описанное в патенте Юинга (№5,625,241), который также напоминает уже упомянутое изобретение Лангли. На основе процесса магнитного отталкивания в изобретении Юинга используется поворотный механизм с микропроцессорным управлением в основном для того, чтобы воспользоваться преимуществом, предоставляемым законом Ленца, а также с тем, чтобы преодолеть обратную эдс. Демонстрацию работы изобретения Юинга можно увидеть на коммерческом видео «Free Energy: The Race to Zero Point». Является ли это изобретение наиболее высокоэффективным из всех двигателей, в настоящее время представленных на рынке, остается под вопросом. Как утверждается в патенте: «функционирование устройства в качестве двигателя также возможно при использовании импульсного источника постоянного тока». Конструкция также содержит программируемое логическое устройство управления и схему управления мощностью, которые по предположению изобретателей должны сделать его более эффективным, чем 100%.

Даже если модели мотора докажут свою эффективность в получении вращающегося момента или преобразования силы, то из-за движущихся внутри них магнитов эти устройства могут остаться без практического применения. Коммерческая реализация этих типов моторов может быть невыгодной, так как на современном рынке существует множество конкурентоспособных конструкций.

Линейные моторы

Тема линейных индукционных моторов широко освещена в литературе. В издании объясняется, что эти моторы являются подобными стандартным асинхронным двигателям, в которых ротор и статор демонтированы и помещены вне плоскости. Автор книги «Движение без колес» Лэйтвайт известен созданием монорельсовых конструкций, предназначенных для поездов Англии и разработанных на основе линейных асинхронных моторов.

Патент Хартмана №4,215,330 представляет собой пример одного из устройств, в котором с помощью линейного мотора достигнуто перемещение стального шара вверх по намагниченной плоскости приблизительно на 10 уровней. Другое изобретение из этой категории описано в патенте Джонсона (№5,402,021), в котором использован постоянный дуговой магнит, установленный на четырехколесной тележке. Этот магнит подвергается воздействию со стороны параллельного конвейера с зафиксированными переменными магнитами. Еще одним не менее удивительным изобретением является устройство, описанное в другом патенте Джонсона (№4,877,983) и успешная работа которого наблюдалась в замкнутом контуре в течение нескольких часов. Необходимо отметить, что генераторная катушка может быть размещена в непосредственной близости от движущегося элемента, так чтобы каждый его пробег сопровождался электрическим импульсом для зарядки батареи. Устройство Хартмана также может быть сконструировано как круговой конвейер, что позволяет продемонстрировать вечное движение первого порядка.

Патент Хартмана основывается на том же принципе, что и известный эксперимент с электронным спином, который в физике принято называть экспериментом Стерна-Герлаха. В неоднородном магнитном поле воздействие на некий объект с помощью магнитного момента вращения происходит за счет градиента потенциальной энергии. В любом учебнике физики можно найти указание на то, что этот тип поля, сильный на одном конце и слабый на другом, способствует возникновению однонаправленной силы, обращенной в сторону магнитного объекта и равного dB/dx. Таким образом, сила, толкающая шар по намагниченной плоскости на 10 уровней вверх в направлении, полностью согласуется с законами физики.

Используя промышленые качественные магниты (включая сверхпроводящие магниты, при температуре окружающей среды, разработка которых в настоящее время находится на завершающей стадии), будет возможна демонстрация перевозки грузов, обладающих статочно большой массой, без затрат электричества на техническое обслуживание. Сверхпроводящие магниты обладают необычной способностью годами сохранять исходное намагниченное поле, не требуя периодической подачи питания для восстановления напряженности исходного поля. Примеры того положения, которое сложилось на современном рынке в области разработки сверхпроводниковых магнитов, приведены в патенте Охниши №5,350,958 (недостаток мощности, производимой криогенной техникой и системами освещения), а также в переизданной статье, посвященной магнитной левитации .

Статический электромагнитный момент импульса

В провокационном эксперименте с использованием цилиндрического конденсатора исследователи Грэм и Лахоз развивают идею, опубликованную Эйнштейном и Лаубом в 1908 году, в которой говорится о необходимости наличия дополнительного периода времени для сохранения принципа действия и противодействия. Цитируемая исследователями статья была переведена и опубликована в моей книге , представленной ниже. Грэм и Лахоз подчеркивают, что существует «реальная плотность момента импульса», и предлагают способ наблюдения этого энергетического эффекта в постоянных магнитах и электретах.

Эта работа является вдохновляющим и впечатляющим исследованием, использующим данные, основанные на работах Эйнштейна и Минковского. Это исследование может иметь непосредственное применение при создании, как униполярного генератора, так и магнитного преобразователя энергии, описанного ниже. Данная возможность обусловлена тем, что оба устройства обладают аксиальным магнитным и радиальным электрическим полями, подобно цилиндрическому конденсатору, использовавшемуся в эксперименте Грэма и Лахоза.

Униполярный мотор

В книге подробно описываются экспериментальные исследования и история изобретения, сделанного Фарадеем. Кроме того, уделяется внимание тому вкладу, которое привнес в данное исследование Тесла. Однако в недавнем времени был предложен ряд новых конструкторских решений униполярного двигателя с несколькими роторами, который можно сравнить с изобретением Дж. Р.Р. Серла.

Возобновление интереса к устройству Серла также должно привлечь внимание к униполярным двигателям. Предварительный анализ позволяет обнаружить существование двух различных явлений, происходящих одновременно в униполярном двигателе. Одно из явлений можно назвать эффектом «вращения» (№1), а второй - эффектом «свертывания» (№2). Первый эффект может быть представлен в качестве намагниченных сегментов некоего воображаемого сплошного кольца, которые вращаются вокруг общего центра. Примерные варианты конструкций, позволяющих произвести сегментацию ротора униполярного генератора, представлены в .

С учетом предложенной модели может быть рассчитан эффект №1 для силовых магнитов Тесла, которые намагничиваются по оси и распологаются вблизи одиночного кольца с диаметром 1 метр. При этом эдс, образующаяся вдоль каждого ролика, составляет более 2V (электрическое поле, направленное радиально из внешнего диаметра роликов к внешнему диаметру смежного кольца) при частоте вращения роликов 500 оборотов в минуту. Стоит отметить, что эффект №1 не зависит от вращения магнита. Магнитное поле в униполярном генераторе связано с пространством, а не с магнитом, поэтому вращение не будет оказывать влияния на эффект силы Лоренца, имеющий место при работе этого универсального униполярного генератора .

Эффект №2, имеющий место внутри каждого роликового магнита, описан в , где каждый ролик рассматривается как небольшой униполярный генератор. Этот эффект признается чем-то более слабым, так как электричество вырабатывается от центра каждого ролика к периферии. Эта конструкция напоминает униполярный генератор Тесла , в котором вращающийся приводной ремень связывает внешний край кольцевого магнита. При вращении роликов, имеющих диаметр, приблизительно равный одной десятой метра, которое осуществляется вокруг кольца с диаметром 1 метр и при отсутствии буксировки роликов, вырабатываемое напряжение будет равно 0,5 Вольт. Конструкция кольцевого магнетика, предложенная Серлом, будет способствовать усилению B-поля ролика.

Необходимо отметить, что принцип наложения применим к обоим этим эффектам. Эффект №1 представляет собой однородное электронное поле, существующее по диаметру ролика. Эффект №2 - это радиальный эффект, что уже было отмечено выше . Однако фактически только эдс, действующая в сегменте ролика между двумя контактами, то есть между центром ролика и его краем, который соприкасается с кольцом, будет способствовать возникновению электрического тока в любой внешней цепи. Понимание данного факта означает, что эффективное напряжение, возникающее при эффекте №1 составит половину существующей эдс, или чуть больше 1 Вольт, что примерно в два раза больше, чем вырабатываемое при эффекте №2. При применении наложения в ограниченном пространстве мы также обнаружим, что два эффекта противостоят друг другу, и две эдс должны вычитаться. Результатом этого анализа является то, что примерно 0,5 Вольт регулируемой эдс будет представлено для выработки электричества в отдельной установке, содержащей ролики и кольцо с диаметром 1 метр. При получении тока возникает эффект шарикоподшипникового двигателя , который фактически толкает ролики, допуская приобретение роликовыми магнитами значительной электропроводности. (Автор благодарит за данное замечание Пола Ла Виолетте).

В связанной с данной темой работе исследователями Рощиным и Годиным были опубликованы результаты экспериментов с изобретенным ими однокольцевым устройством, названным «Преобразователем магнитной энергии» и имеющим вращающиеся магниты на подшипниках. Устройство было сконструировано как усовершенствование изобретения Серла. Анализ автора этой статьи, приведенный выше, не зависит от того, какие металлы использовались для изготовления колец в конструкции Рощина и Година. Их открытия достаточно убедительны и детальны, что позволит возобновить интерес многих исследователей к этому типу моторов.

Заключение

Итак, существует несколько моторов на постоянных магнитах, которые могут способствовать появлению вечного двигателя с кпд, превышающим 100%. Естественно, необходимо принимать во внимание концепции сохранения энергии, а также должен исследоваться источник предполагаемой дополнительной энергии. Если градиенты постоянного магнитного поля претендуют на появление однонаправленной силы, как это утверждается в учебниках, то наступит момент, когда они будут приняты для выработки полезной энергии. Конфигурация роликового магнита, который в настоящее время принято называть «преобразователем магнитной энергии», также представляет собой уникальную конструкцию магнитного мотора. Проиллюстрированное Рощиным и Годиным в Российском патенте №2155435 устройство является магнитным электродвигателем-генератором, который демонстрирует возможность выработки дополнительной энергии. Так как работа устройства основана на циркулировании цилиндрических магнитов, вращающихся вокруг кольца, то конструкция фактически представляет собой скорее генератор, чем мотор. Однако это устройство является действующим мотором, так как для запуска отдельного электрогенератора используется вращающий момент, вырабатываемый самоподдерживающимся движением магнитов.

Литература

1. Motion Control Handbook (Designfax, May, 1989, p.33)

2. «Faraday’s Law - Quantitative Experiments», Amer. Jour. Phys.,

3. Popular Science, June, 1979

4. IEEE Spectrum 1/97

5. Popular Science (Популярная наука), May, 1979

6. Schaum’s Outline Series, Theory and Problems of Electric

Machines andElectromechanics (Теория и проблемы электрических

машин и электромеханики) (McGraw Hill, 1981)

7. IEEE Spectrum, July, 1997

9. Thomas Valone, The Homopolar Handbook

10. Ibidem, p. 10

11. Electric Spacecraft Journal, Issue 12, 1994

12. Thomas Valone, The Homopolar Handbook, p. 81

13. Ibidem, p. 81

14. Ibidem, p. 54

Tech. Phys. Lett., V. 26, #12, 2000, p.1105-07

Томас Валон Integrity Research Institute, www.integrityresearchinstitute.org

1220 L St. NW, Suite 100-232, Washington, DC 20005

Сегодня постоянные магниты находят полезное применение во многих областях человеческой жизни. Порой мы не замечаем их присутствия, однако практически в любой квартире в различных электроприборах и в механических устройствах, если внимательно приглядеться, можно обнаружить . Электробритва и динамик, видеоплеер и настенные часы, мобильный телефон и микроволновка, дверца холодильника наконец - всюду можно встретить постоянные магниты.

Они применяются в медицинской технике и в измерительной аппаратуре, в различных инструментах и в автомобильной промышленности, в двигателях постоянного тока, в акустических системах, в бытовых электроприборах и много-много где еще: радиотехника, приборостроение, автоматика, телемеханика и т. д. - ни одна из этих областей не обходится без использования постоянных магнитов.

Конкретные решения с применением постоянных магнитов можно было бы перечислять бесконечно, тем не менее, предметом данной статьи станет краткий обзор нескольких применений постоянных магнитов в электротехнике и электроэнергетике.


Со времен Эрстеда и Ампера широко известно, что проводники с током и электромагниты взаимодействуют с магнитным полем постоянного магнита. На этом принципе основана работа многих двигателей и генераторов. За примерами далеко ходить не надо. Вентилятор в блоке питания вашего компьютера имеет ротор и статор.

Крыльчатка с лопастями представляет собой ротор с расположенными по кругу постоянными магнитами, а статор - это сердечник электромагнита. Перемагничивая статор, электронная схема создает эффект вращения магнитного поля статора, за магнитным полем статора, стремясь к нему притянуться, следует магнитный ротор - вентилятор вращается. Аналогичным образом реализовано вращение жесткого диска, и подобным образом работают .


В электрогенераторах постоянные магниты также нашли свое применение. Синхронные генераторы для домашних ветряков, например, - одно из прикладных направлений.

На статоре генератора по окружности располагаются генераторные катушки, которые в процессе работы ветряка пересекаются переменным магнитным полем движущихся (под действием дующего на лопасти ветра) постоянных магнитов, закрепленных на роторе. Повинуясь , пересекаемые магнитами проводники генераторных катушек направляют в цепь потребителя ток.

Такие генераторы используются не только в ветряках, но и в некоторых промышленных моделях, где вместо обмотки возбуждения на роторе установлены постоянные магниты. Достоинство решений с магнитами - возможность получить генератор с низкими номинальными оборотами.

В проводящий диск вращается в поле постоянного магнита. Ток потребления, походя через диск, взаимодействует с магнитным полем постоянного магнита, и диск вращается.

Чем больше ток - тем выше частота вращения диска, поскольку вращающий момент создается силой Лоренца, действующей на движущиеся заряженные частицы внутри диска со стороны магнитного поля постоянного магнита. По сути, такой счетчик - это небольшой мощности с магнитом на статоре.


Для измерения слабых токов применяют - очень чувствительные измерительные приборы. Здесь подковообразный магнит взаимодействует с маленькой токонесущей катушкой, которая подвешена в зазоре между полюсами постоянного магнита.

Отклонение катушки в процессе измерения происходит благодаря вращающему моменту, который создается из-за магнитной индукции, возникающей при прохождении тока через катушку. Таким образом, отклонение катушки оказывается пропорционально значению результирующей магнитной индукции в зазоре, и, соответственно, току в проводе катушки. Для малых отклонений шкала гальванометра получается линейной.


Наверняка на вашей кухне есть микроволновка. И в ней есть целых два постоянных магнита. Для генерации СВЧ-диапазона, в микроволновке установлен . Внутри магнетрона электроны движутся в вакууме от катода к аноду, и в процессе движения их траектория должна искривляться, чтобы резонаторы на аноде возбуждались достаточно мощно.

Для искривления траектории электронов, сверху и снизу вакуумной камеры магнетрона установлены кольцевые постоянные магниты. Магнитное поле постоянных магнитов искривляет траектории движения электронов так, что получается мощный вихрь из электронов, который возбуждает резонаторы, которые в свою очередь генерируют электромагнитные волны СВЧ-диапазона для разогрева пищи.


Чтобы головка жесткого диска точно позиционировалась, ее движения в процессе записи и считывания информации должны очень точно управляться и контролироваться. Снова на помощь приходит постоянный магнит. Внутри жесткого диска, в магнитном поле закрепленного неподвижно постоянного магнита, перемещается катушка с током, связанная с головкой.

Когда на катушку головки подается ток, магнитное поле этого тока, в зависимости от его значения, отталкивает катушку от постоянного магнита сильнее или слабее, в ту или иную сторону, таким образом головка приходит в движение, причем с высокой точностью. Этим движением управляет микроконтроллер.


В целях повышения эффективности энергопотребления, в некоторых странах для предприятий сооружают механические накопители электроэнергии. Это электромеханические преобразователи, работающие на принципе инерционного накопления энергии в форме кинетической энергии вращающегося маховика, называемые .

Так например, в Германии компания ATZ разработала кинетический накопитель энергии на 20 МДж, мощностью 250 кВт, причем удельная энергоемкость составляет примерно 100 Вт-ч/кг. При весе маховика в 100 кг, при вращении со скоростью 6000 об/мин, цилиндрической конструкции диаметром 1,5 метра нужны были качественные подшипники. В итоге нижний подшипник был изготовлен, конечно, на основе постоянных магнитов.

Понравилась статья? Поделитесь ей