Контакты

Какие процессы вызывают анаэробы. Анаэробные бактерии – что это такое? Отличие анаэробов от аэробов

Аэробными организмами называются такие организмы, которые способны жить и развиваться только при наличии в среде свободного кислорода, используемого ими в качестве окислителя. К аэробным организмам принадлежат все растения, большинство простейших и многоклеточных животных, почти все грибы, то есть подавляющее большинство известных видов живых существ.

У животных жизнь в отсутствие кислорода (анаэробиоз) встречается как вторичное приспособление. Аэробные организмы осуществляют биологическое окисление главным образом посредством клеточного дыхания. В связи с образованием при окислении токсичных продуктов неполного восстановления кислорода, аэробные организмы обладают рядом ферментов (каталаза, супероксиддисмутаза), обеспечивающих их разложение и отсутствующих или слабо функционирующих у облигатных анаэробов, для которых кислород оказывается вследствие этого токсичным.

Наиболее разнообразна дыхательная цепь у бактерий, обладающих не только цитохромоксидазой, но и другими терминальными оксидазами.

Особое место среди аэробных организмов занимают организмы, способные к фотосинтезу, - цианобактерии, водоросли, сосудистые растения. Выделяемый этими организмами кислород обеспечивает развитие всех остальных аэробных организмов.

Организмы, способные развиваться при низкой концентрации кислорода (≤ 1 мг/л), называются микроаэрофилами.

Анаэробные организмы способны жить и развиваться при отсутствии в среде свободного кислорода. Термин «анаэробы» ввел Луи Пастер, открывший в 1861 году бактерии маслянокислого брожения. Распространены они главным образом среди прокариот. Метаболизм их обусловлен необходимостью использовать иные окислители, чем кислород.

Многие анаэробные организмы, использующие органические вещества (все эукариоты, получающие энергию в результате гликолиза), осуществляют различные типы брожения, при которых образуются восстановленные соединения - спирты, жирные кислоты.

Другие анаэробные организмы - денитрифицирующие (часть из них восстанавливает окисное железо), сульфатвосстанавливающие, метанообразующие бактерии - используют неорганические окислители: нитрат, соединения серы, СО 2 .

Анаэробные бактерии разделяются на группы маслянокислых и т.д. в соответствии с основным продуктом обмена. Особую группу анаэробов составляют фототрофные бактерии.

По отношению к О 2 анаэробные бактерии делятся на облигат- ных, которые неспособны использовать его в обмене, и факультативных (например, денитрифицирующие), которые могут переходить от анаэробиоза к росту в среде с О 2 .

На единицу биомассы анаэробные организмы образуют много восстановленных соединений, основными продуцентами которых в биосфере они и являются.

Последовательность образования восстановленных продуктов (N 2 , Fe 2+, H 2 S, CH 4), наблюдаемая при переходе к анаэробиозу, например в донных отложениях, определяется энергетическим выходом соответствующих реакций.

Анаэробные организмы развиваются в условиях, когда О 2 полностью используется аэробными организмами, например в сточных водах, илах.

Влияние количества растворенного кислорода на видовой состав и численность гидробионтов .

Степень насыщенности воды кислородом обратно пропорциональна ее температуре. Концентрация растворенного О 2 в поверхностных водах изменяется от 0 до 14 мг/л и подвержена значительным сезонным и суточным колебаниям, которые в основном зависят от со- отношения интенсивности процессов его продуцирования и потребления.

В случае высокой интенсивности фотосинтеза вода может быть значительно пересыщена О 2 (20 мг/л и выше). В водной среде кислород является ограничивающим фактором. О 2 составляет в атмосфере 21% (по объему) и около 35% от всех газов, растворенных в воде. Растворимость его в морской воде составляет 80% от растворимости в пресной воде. Распределение кислорода в водоеме зависит от температуры, перемещения слоев воды, а также от характера и количества живущих в нем организмов.

Выносливость водных животных к низкому содержанию кислорода у разных видов неодинакова. Среди рыб установлено четыре группы по их отношению к количеству растворенного кислорода:

1) 7 - 11 мг / л - форель, гольян, подкаменщик;

2) 5 - 7 мг / л - хариус, пескарь, голавль, налим;

3) 4 мг / л - плотва, ерш;

4) 0,5 мг / л - карп, линь.

Некоторые виды организмов приспособились к сезонным ритмам в потреблении О 2 , связанными с условиями жизни.

Так, у рачка Gammarus Linnaeus выявили, что интенсивность дыхательных процессов возрастает вместе с температурой и изменяется в течение года.

У животных, живущих в местах, бедных кислородом (прибрежный ил, донный ил), обнаружены дыхательные пигменты, служащие резервом кислорода.

Эти виды способны выживать, переходя к замедленной жизни, к анаэробиозу или благодаря тому, что у них имеется d-гемоглобин, обладающий большим сродством к кислороду (дафнии, олигохеты, полихеты, некоторые пластинчатожаберные моллюски).

Другие водные беспозвоночные поднимаются за воздухом на поверхность. Это имаго жуков-плавунцов и водолюбов, гладыши, водя- ные скорпионы и водяные клопы, прудовики и катушка (брюхоногие моллюски). Некоторые жуки окружают себя воздушным пузырьком, удерживаемым волоском, а насекомые могут использовать воздух из воздухоносных пазух водяных растений.

Организмы, которые способны получать энергию в условиях отсутствия кислорода, называются анаэробами. Причём к группе анаэробов относятся как микроорганизмы (простейшие и группа прокариотов), так и макроорганизмы, к которым можно отнести некоторые водоросли, грибы, животных и растения. В нашей статье мы подробно рассмотрим анаэробные бактерии, которые используются для очистки сточных вод в локальных очистных сооружениях. Поскольку наряду с ними в очистных сооружениях могут применяться аэробные микроорганизмы, мы проведём сравнение этих бактерий.

Что такое анаэробы, мы разобрались. Теперь стоит понять, на какие виды они делятся. В микробиологии используется следующая таблица классификации анаэробов:

  • Факультативные микроорганизмы . Факультативно-анаэробными называют бактерии, которые могут менять свой метаболический путь, то есть способны менять дыхание с анаэробного на аэробное и наоборот. Можно утверждать, что они живут факультативно.
  • Капнеистические представители группы способны жить только в среде с пониженным содержанием кислорода и повышенным содержанием углекислого газа.
  • Умеренно-строгие организмы могут выживать в среде с содержанием молекулярного кислорода. Однако тут они не способны размножаться. Макроаэрофилы могут и выживать, и размножаться в среде с пониженным парциальным давлением кислорода.
  • Аэротолерантные микроорганизмы отличаются тем, что они не могут жить факультативно, то есть не в состоянии переключаться с анаэробного дыхания на аэробное. Однако от группы факультативно-анаэробных микроорганизмов они отличаются тем, что не гибнут в среде с молекулярным кислородом. В эту группу входит большинство маслянокислых бактерий и некоторые виды молочнокислых микроорганизмов.
  • Облигатные бактерии быстро гибнут в среде с содержанием молекулярного кислорода. Они способны жить только в условиях полной изоляции от него. В эту группу входят инфузории, жгутиковые, некоторые виды бактерий и дрожжи.

Влияние кислорода на бактерии

Любая среда, содержащая кислород, агрессивно воздействует на органические формы жизни. Всё дело в том, что в процессе жизнедеятельности различных форм жизни или из-за влияния некоторых видов ионизирующего излучения образуются активные формы кислорода, которые отличаются большей токсичностью в сравнении с молекулярным веществом.

Главным определяющим фактором для выживания живого организма в условиях кислородной среды является наличие у него антиоксидантной функциональной системы, которая способна к элиминации. Обычно такие защитные функции обеспечиваются одним или сразу несколькими ферментами:

  • цитохром;
  • каталаза;
  • супероксиддисмутаза.

При этом некоторые анаэробные бактерии факультативного вида содержат только один вид фермента – цитохром. Аэробные микроорганизмы имеют целых три цитохрома, поэтому прекрасно себя чувствуют в условиях кислородной среды. А облигатные анаэробы вообще не содержат цитохром.

Однако некоторые анаэробные организмы могут воздействовать на окружающую их среду и создавать подходящий ей окислительно-восстановительный потенциал. Например, определённые микроорганизмы перед началом размножения снижают кислотность среды с показателя 25 до 1 или 5. Это позволяет им оградить себя особым барьером. А аэротолерантные анаэробные организмы, которые в процесс своей жизнедеятельности выделяют перекись водорода, могут повышать кислотность среды.

Важно: для обеспечения дополнительной антиоксидантной защиты, бактерии синтезируют или накапливают низкомолекулярные антиоксиданты, к которым относятся витамины группы А, Е и С, а также лимонная и другие виды кислот.

Как анаэробы получают энергию?

  1. Некоторые микроорганизмы получают энергию в процессе катаболизма различных соединений аминокислот, например, белков и пептидов, а также самих аминокислот. Как правило, такой процесс высвобождения энергии называется гниением. А саму среду, в энергообмене которой наблюдается много процессов катаболизма соединений аминокислот и самих аминокислот, называют гнилостной средой.
  2. Другие анаэробные бактерии способны расщеплять гексозы (глюкозу). При этом могут использоваться разные пути расщепления:
    • гликолиз. После него в среде происходят бродильные процессы;
    • окислительный путь;
    • реакции Энтнера-Дудорова, которые проходят в условиях маннановой, гексуроновой или глюконовой кислоты.

При этом только анаэробные представители могут использовать гликолиз. Он может делиться на несколько разновидностей брожения в зависимости от продуктов, которые образуются после реакции:

  • спиртовое брожение;
  • молочнокислое брожение;
  • вид энтеробактерий муравьиной кислоты;
  • маслянокислое брожение;
  • пропионовокислая реакция;
  • процессы с выделением молекулярного кислорода;
  • метановое брожение (используется в септиках).

Особенности анаэробов для септика

В анаэробных септиках используются микроорганизмы, которые способны производить переработку стоков без доступа кислорода. Как правило, в отсеке, где находятся анаэробы, значительно ускоряются процессы гниения сточных вод. В результате этого процесса твёрдые соединения выпадают на дно в виде осадка. При этом жидкая составляющая стоков качественно очищается от различных органических включений.

Во время жизнедеятельности этих бактерий образуется большое количество твёрдых соединений. Все они оседают на дне локального очистного сооружения, поэтому оно нуждается в регулярной очистке. Если очистку производить не своевременно, то эффективная и слаженная работа очистной установки может быть полностью нарушена и выведена из строя.

Внимание: осадок, добытый после очистки септика, не стоит использовать в качестве удобрения, поскольку в нём содержатся вредные микроорганизмы, способные нанести вред окружающей среде.

Поскольку анаэробные представители бактерий в процесс своей жизнедеятельности вырабатывают метан, очистные сооружения, которые работают с использованием этих организмов, должны укомплектовываться эффективной системой вентиляции. В противном случае неприятный запах способен испортить окружающий воздух.

Важно: эффективность очистки стоков с использованием анаэробов составляет только 60-70 %.

Недостатки использования анаэробов в септиках

Анаэробные представители бактерий, входящие в состав различных биопрепаратов для септиков, имеют следующие недостатки:

  1. Отходы, которые образуются после переработки бактериями сточных вод, не подходят для удобрения почвы из-за содержания в них вредных микроорганизмов.
  2. Поскольку в ходе жизнедеятельности анаэробов образуется большое количество плотного осадка, его удаление необходимо проводить регулярно. Для этого вам придётся вызывать ассенизаторов.
  3. Очистка стоков с использованием анаэробных бактерий происходит не полностью, а только максимум на 70 процентов.
  4. Очистное сооружение, функционирующее с использованием этих бактерий, может издавать очень неприятный запах, который обусловлен тем, что данные микроорганизмы выделяют метан в процессе жизнедеятельности.

Отличие анаэробов от аэробов

Главное отличие между аэробами и анаэробами состоит в том, что первые способны жить и размножаться в условиях с высоким содержанием кислорода. Поэтому такие септики обязательно укомплектовываются компрессором и аэратором для закачивания воздуха. Как правило, эти локальные очистные сооружения не издают такого неприятного запах.

В отличие от них анаэробные представители (как показывает таблица микробиологии, описанная выше) не нуждаются в кислороде. Более того некоторые их виды способны погибнуть при высоком содержании этого вещества. Поэтому такие септики не требуют закачивания воздуха. Для них важно лишь удаление образовавшегося метана.

Ещё одно отличие состоит в количестве образующегося осадка. В системах с аэробами количество осадка намного меньше, поэтому очистку сооружения можно проводить намного реже. Кроме этого, очистку септика можно выполнять без вызова ассенизаторов. Для удаления густого осадка из первой камеры можно взять обычный сачок, а чтобы откачать активный ил, образующийся в последней камере, достаточно использовать дренажный насос. Более того активный ил из очистного сооружения с использованием аэробов можно использовать для удобрения почвы.

Анаэробные организмы

Аэробные и анаэробные бактерии предварительно идентифицируются в жидкой питательной среде по градиенту концентрации O 2:
1. Облигатные аэробные (нуждающиеся в кислороде) бактерии в основном собираются в верхней части пробирки, чтобы поглощать максимальное количество кислорода. (Исключение: микобактерии - рост пленкой на поверхности из-за восколипидной мембраны.)
2. Облигатные анаэробные бактерии собираются в нижней части, чтобы избежать кислорода (либо не дают роста).
3. Факультативные бактерии собираются в основном в верхнем ( является наиболее выгодным, чем гликолиз), однако они могут быть найдены на всем протяжении среды, так как от O 2 не зависят.
4. Микроаэрофилы собираются в верхней части пробирки, но их оптимум - малая концентрация кислорода.
5. Аэротолерантные анаэробы не реагируют на концентрации кислорода и равномерно распределяются по пробирке.

Анаэробы - организмы, получающие энергию при отсутствии доступа кислорода путем субстратного фосфорилирования , конечные продукты неполного окисления субстрата при этом могут быть окислены с получением большего количества энергии в виде АТФ в присутствии конечного акцептора протонов организмами, осуществляющими окислительное фосфорилирование .

Анаэробы - обширная группа организмов, как микро-, так и макроуровня:

  • анаэробные микроорганизмы - обширная группа прокариотов и некоторые простейшие.
  • макроорганизмы - грибы , водоросли , растения и некоторые животные (класс фораминиферы , большинство гельминтов (класс сосальщики , ленточные черви , круглые черви (например, аскарида)).

Помимо этого анаэробное окисление глюкозы играет важную роль в работе поперечно-полосатой мускулатуры животных и человека (особенно в состоянии тканевой гипоксии).

Классификация анаэробов

Согласно устоявшейся в микробиологии классификации, различают:

  • Факультативные анаэробы
  • Капнеистические анаэробы и микроаэрофилы
  • Аэротолерантные анаэробы
  • Умеренно-строгие анаэробы
  • Облигатные анаэробы

Если организм способен переключаться с одного метаболического пути на другой (например, с анаэробного дыхания на аэробное и обратно), то его условно относят к факультативным анаэробам .

До 1991 года в микробиологии выделяли класс капнеистических анаэробов , требовавших пониженной концентрации кислорода и повышенной концентрации углекислоты (Бруцеллы бычьего типа - B. abortus )

Умеренно-строгий анаэробный организм выживает в среде с молекулярным O 2 , однако не размножается. Микроаэрофилы способны выживать и размножаться в среде с низким парциальным давлением O 2 .

Если организм не способен «переключиться» с анаэробного типа дыхания на аэробный, но не гибнет в присутствии молекулярного кислорода , то он относится к группе аэротолерантных анаэробов . Например, молочнокислые и многие маслянокислые бактерии

Облигатные анаэробы в присутствии молекулярного кислорода O 2 гибнут - например, представители рода бактерий и архей : Bacteroides , Fusobacterium , Butyrivibrio , Methanobacterium ). Такие анаэробы постоянно живут в лишенной кислорода среде. К облигатным анаэробам относятся некоторые бактерии, дрожжи, жгутиковые и инфузории.

Токсичность кислорода и его форм для анаэробных организмов

Среда с содержанием кислорода является агрессивной по отношению к органическим формам жизни. Это связано с образованием активных форм кислорода в процессе жизнедеятельности или под действием различных форм ионизирующего излучения, значительно более токсичных, чем молекулярный кислород O 2 . Фактор, определяющий жизнеспособность организма в среде кислорода - наличие у него функциональной антиоксидантной системы, способной к элиминации:супероксид-аниона(O 2 −),перекиси водорода (H 2 O 2), синглетного кислорода (O .), а также молекулярного кислорода (O 2) из внутренней среды организма. Наиболее часто подобная защита обеспечивается одним или несколькими ферментами:

  • супероксиддисмутаза , элиминирующая супероксид-анион(O 2 −) без энергетической выгоды для организма
  • каталаза , элиминирующая перекись водорода (H 2 O 2) без энергетической выгоды для организма
  • цитохром - фермент, отвечающий за перенос электронов от NAD H к O 2 . Этот процесс обеспечивает существенную энергетическую выгоду организму.

Аэробные организмы содержат чаще всего три цитохрома, факультативные анаэробы - один или два, облигатные анаэробы не содержат цитохромов.

Анаэробные микроорганизмы могут активно воздействовать на среду, создавая подходящий окислительно-восстановительный потенциал среды (напр. Cl.perfringens). Некоторые засеянные культуры анаэробных микроорганизмов, прежде чем начать размножаться, снижают pH 2 0 с величины до , ограждая себя восстановительным барьером, другие - аэротолерантные - в процессе жизнедеятельности продуцируют перекись водорода, повышая pH 2 0 .

При этом характерным только для анаэробов является гликолиз , который в зависимости от конечных продуктов реакции разделяют на несколько типов брожению :

  • молочнокислое брожение - род Lactobacillus ,Streptococcus , Bifidobacterium , а также некоторые ткани многоклеточных животных и человека.
  • спиртовое брожение - сахаромицеты , кандида (организмы царства грибов)
  • муравьинокислое - семейство энтеробактерий
  • маслянокислое - некоторые виды клостридий
  • пропионовокислое - пропионобактерии(например, Propionibacterium acnes )
  • брожение с выделением молекулярного водорода - некоторые виды клостридий , ферментация Stickland
  • метановое брожение - например, Methanobacterium

В результате расщепления глюкозы расходуется 2 молекулы, а синтезируется 4 молекулы АТФ . Таким образом общий выход АТФ составляет 2 молекулы АТФ и 2 молекулы НАД·Н 2 . Полученный в ходе реакции пируват утилизируется клеткой по-разному в зависимости от того, какому типу брожения она следует.

Антагонизм брожения и гниения

В процессе эволюции сформировался и закрепился биологический антагонизм бродильной и гнилостной микрофлоры:

Расщепление микроорганизмами углеводов сопровождается значительным снижением среды, в то время как расщепление белков и аминокислот - повышением (защелачиванием). Приспособление каждого из организмов к определенной реакции среды играет важнейшую роль в природе и жизни человека, например, благодаря бродильным процессам предотвращается загнивание силоса, заквашенных овощей, молочных продуктов.

Культивирование анаэробных организмов

Выделение чистой культуры анаэробов схематично

Культивирование анаэробных организмов в основном является задачей микробиологии.

Для культивирования анаэробов применяют особые методы, сущность которых заключается в удалении воздуха или замены его специализированной газовой смесью (или инертными газами) в герметизированных термостатах - анаэростатах .

Другим способом выращивания анаэробов(чаще всего микроорганизмов) на питательных средах - добавление содержащих редуцирующие вещества (глюкозу , муравьинокислый натрий и др.), уменьшающие окислительно-восстановительный потенциал.

Общие питательные среды для анаэробных организмов

Для общей среды Вильсона - Блера базой является агар-агар с добавлением глюкозы , сульфита натрия и двуххлористого железа. Клостридии образуют на этой среде колонии чёрного цвета за счет восстановления сульфита до сульфид - аниона , который соединяясь с катионами железа (II) дает соль чёрного цвета. Как правило, черные на этой среде образования колонии , появляются в глубине агарового столбика.

Среда Китта - Тароцци состоит из мясопептонного бульона, 0,5% глюкозы и кусочков печени или мясного фарша для поглощения кислорода из среды. Перед посевом среду прогревают на кипящей водяной бане в течение 20 - 30 минут для удаления воздуха из среды. После посева питательную среду сразу заливают слоем парафина или вазелинового масла для изоляции от доступа кислорода.

Общие методы культивирования для анаэробных организмов

GasPak - система химическим путем обеспечивает постоянство газовой смеси, приемлемой для роста большинства анаэробных микроорганизмов. В герметичном контейнере, в результате реакции воды с таблетками боргидрида натрия и бикарбоната натрия образуется водород и диоксид углерода . Водород затем реагирует с кислородом газовой смеси на палладиевом катализаторе с образованием воды, уже вторично вступающей в реакцию гидролиза боргидрида.

Данный метод был предложен Брюером и Олгаером в 1965 году. Разработчики представили одноразовый пакет, генерирующий водород, который был позднее усовершенствован ими до саше, генерирующих двуокись углерода и содержащих внутренний катализатор.

Метод Цейсслера применяется для выделения чистых культур спорообразующих анаэробов. Для этого производят посев на среду Китт-Тароцци, прогревают 20 мин при 80 °C (для уничтожения вегетативной формы), заливают среду вазелиновым маслом и инкубируют 24 ч в термостате. Затем производят посев на сахарно-кровяной агар для получения чистых культур. После 24-часового культивирования интересующие колонии изучаются - их пересеивают на среду Китт-Тароцци (с последующим контролем чистоты выделенной культуры).

Метод Фортнера

Метод Фортнера - посевы производят на чашку Петри с утолщенным слоем среды, разделённым пополам узкой канавкой, вырезанной в агаре. Одну половину засевают культуру аэробных бактерий, на другую - анаэробных. Края чашки заливают парафином и инкубируют в термостате. Первоначально наблюдают рост аэробной микрофлоры, а затем (после поглощения кислорода) - рост аэробной резко прекращается и начинается рост анаэробной.

Метод Вейнберга используется для получения чистых культур облигатных анаэробов. Культуры, выращенные на среде Китта-Тароцци, переносят в сахарный бульон. Затем одноразовой пастеровской пипеткой материал переносят в узкие пробирки (трубки Виньяля) с сахарным мясо-пептонным агаром, погружая пипетку до дна пробирки. Засеянные пробирки быстро охлаждают, что позволяет фиксировать бактериальный материал в толще затвердевшего агара. Пробирки инкубируют в термостате, а затем изучают выросшие колонии. При обнаружении интересующей колонии на её месте делают распил, материал быстро отбирают и засеивают на среду Китта-Тароцци (с последующим контролем чистоты выделенной культуры).

Метод Перетца

Метод Перетца - в расплавленный и охлаждённый сахарный агар-агар вносят культуру бактерий и заливают под стекло, помещённое на пробковых палочках(или фрагментах спичек) в чашку Петри . Метод наименее надежен из всех, но достаточно прост в применении.

Дифференциально - диагностические питательные среды

  • Среды Гисса («пестрый ряд»)
  • Среда Ресселя (Рассела)
  • Среда Плоскирева или бактоагар «Ж»
  • Висмут-сульфитный агар

Среды Гисса : К 1 % пептонной воде добавляют 0,5 % раствор определенного углевода (глюкоза, лактоза, мальтоза, маннит, сахароза и др.) и кислотно-щелочной индикатор Андреде, разливают по пробиркам, в которые помещают поплавок для улавливания газообразных продуктов, образующихся при разложении углеводородов.

Среда Ресселя (Рассела) применяется для изучения биохимических свойств энтеробактерий(шигелл, сальмонелл). Содержит питательный агар-агар , лактозу, глюкозу и индикатор (бромтимоловый синий). Цвет среды травянисто-зелёный. Обычно готовят в пробирках по 5 мл со скошенной поверхностью. Посев осуществляют уколом в глубину столбика и штрихом по скошенной поверхности.

Среда Плоскирева (бактоагар Ж) - дифференциально-диагностическая и селективная среда, поскольку подавляет рост многих микроорганизмов, и способствует росту патогенных бактерий (возбудителей брюшного тифа, паратифов, дизентерии). Лактозоотрицательные бактерии образуют на этой среде бесцветные колонии, а лактозоположительные - красные. В составе среды - агар, лактоза, бриллиантовый зелёный , соли желчных кислот, минеральные соли, индикатор (нейтральный красный).

Висмут-сульфитный агар предназначен для выделения сальмонелл в чистом виде из инфицированного материала. Содержит триптический гидролизат, глюкозу, факторы роста сальмонелл, бриллиантовый зелёный и агар. Дифференциальные свойства среды основаны на способности сальмонелл продуцировать сероводород , на их устойчивости к присутствию сульфида, бриллиантового зелёного и лимоннокислого висмута. Маркируются колонии в чёрный цвет сернистого висмута (методика схожа со средой Вильсона - Блера ).

Метаболизм анаэробных организмов

Метаболизм анаэробных организмов имеет несколько различных подгрупп:

Анаэробный энергетический обмен в тканях человека и животных

Анаэробное и аэробное энергообразование в тканях человека

Некоторые ткани животных и человека отличаются повышенной устойчивостью к гипоксии (особенно мышечная ткань). В обычных условиях синтез АТФ идет аэробным путем, а при напряженной мышечной деятельности, когда доставка кислорода к мышцам затруднена, в состоянии гипоксии, а также при воспалительных реакциях в тканях доминируют анаэробные механизмы регенерации АТФ. В скелетных мышцах выявлены 3 вида анаэробных и только один аэробный путь регенерации АТФ.

3 вида анаэробного пути синтеза АТФ

К анаэробным относятся:

  • Креатинфосфатазный (фосфогеный или алактатный) механизм - перефосфорилирование между креатинфосфатом и АДФ
  • Миокиназный - синтез (иначе ресинтез ) АТФ при реакции трансфосфорилирования 2 молекул АДФ (аденилатциклаза)
  • Гликолитический - анаэробное расщепление глюкозы крови или запаса гликогена, заканчивающийся образованием

Анаэробы I Анаэро́бы (греч. отрицательная приставка an- + aēr + b жизнь)

микроорганизмы, развивающиеся при отсутствии в окружающей их среде свободного кислорода. Обнаруживаются практически во всех образцах патологического материала при различных гнойно-воспалительных заболеваниях, являются условно-патогенными, иногда патогенными. Различают факультативные и облигатные А. Факультативные А. способны существовать и размножаться как в кислородной, так и в бескислородной среде. К ним относятся кишечная , иерсинии, стрептококки, и другие Бактерии .

Облигатные А. погибают при наличии свободного кислорода в окружающей среде. Их разделяют на две группы: , образующие , или клостридии, и бактерии, не образующие спор, или так называемые неклостридиальные анаэробы. Среди клостридий различают возбудителей анаэробных клостридиальных инфекций - ботулизма, клостридиальной раневой инфекции, столбняка. К неклостридиальным А. относят грамотрицательные и грамположительные бактерии палочковидной или шаровидной формы: , фузобактерии, вейллонеллы, пептококки, пептострептококки, пропионибактерии, эубактерии и др. Неклостридиальные А. являются составной частью нормальной микрофлоры человека и животных, но в то же время играют большую роль в развитии таких гнойно-воспалительных процессов, как , абсцессы легких и головного мозга, эмпиема плевры, флегмоны челюстно-лицевой области, отит и др. Большинство анаэробных инфекций (Анаэробная инфекция), вызываемых неклостридиальными анаэробами, относится к эндогенным и развивается главным образом при снижении резистентности организма в результате , оперативного вмешательства, охлаждения, нарушения иммунитета.

Основную часть клинически значимых А. составляют бактероиды и фузобактерии, пептострептококки и споровые грамположительные палочки. На долю бактероидов приходится около половины гнойно-воспалительных процессов, вызванных анаэробными бактериями.

Библиогр.: Лабораторные методы исследования в клинике, под ред. В.В. Меньшикова. М., 1987.

II Анаэро́бы (Ан- + , син. анаэробные)

1) в бактериологии - микроорганизмы, способные существовать и размножаться при отсутствии в окружающей среде свободного кислорода;

Анаэро́бы облига́тные - А., погибающие при наличии свободного кислорода в окружающей среде.

Анаэро́бы факультати́вные - А., способные существовать и размножаться как при отсутствии, так и при наличии свободного кислорода в окружающей среде.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Анаэробы" в других словарях:

    Современная энциклопедия

    - (анаэробные организмы) способны жить в отсутствии атмосферного кислорода; некоторые виды бактерий, дрожжей, простейших, червей. Энергию для жизнедеятельности получают, окисляя органические, реже неорганические вещества без участия свободного… … Большой Энциклопедический словарь

    - (гр.). Бактерии и тому подобные низшие животные, способные жить лишь при полном отсутствии кислорода воздуха. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. анаэробы (см. анаэробиоз) иначе анаэ робионты,… … Словарь иностранных слов русского языка

    Анаэробы - (от греческого an отрицательная частица, aer воздух и bios жизнь), организмы, способные жить и развиваться в отсутствие свободного кислорода; некоторые виды бактерий, дрожжей, простейших, червей. Облигатные, или строгие, анаэробы развиваются… … Иллюстрированный энциклопедический словарь

    - (от а..., ан... и аэробы), организмы (микроорганизмы, моллюски и др.), способные жить и развиваться в бескислородной среде. Термин ввел Л. Пастер (1861), открывший бактерии масляно кислого брожения. Экологический энциклопедический словарь.… … Экологический словарь

    Организмы (в основном прокариоты), способные жить при отсутствии в среде свободного кислорода. Облигатные А. получают энергию в результате брожения (маслянокислые бактерии и др.), анаэробного дыхания (метаногены, сульфатвосстанавливающие бактерии … Словарь микробиологии

    Сокр. назв. анаэробных организмов. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

    АНАЭРОБЫ - (от греч. а отриц. част., аег воздух и bios жизнь), микроскопические организмы, способные черпать энергию (см. Анаэробиоз) не в реакциях окисления, а в реакциях расщепления как органических соединений, так и неорганических (нитраты, сульфаты и пр … Большая медицинская энциклопедия

    АНАЭРОБЫ - организмы, нормально развивающиеся при полном отсутствии свободного кислорода. В природе А. находятся всюду, где разлагаются органические вещества без доступа воздуха (в глубоких слоях почвы, особенно заболоченной, в навозе, иле и т. п.). Имеются … Прудовое рыбоводство

    Ов, мн. (ед. анаэроб, а; м.). Биол. Организмы, способные жить и развиваться при отсутствии свободного кислорода (ср. аэробы). ◁ Анаэробный, ая, ое. А ые бактерии. А ая инфекция. * * * анаэробы (анаэробные организмы), способны жить в отсутствие… … Энциклопедический словарь

    - (анаэробные организмы), организмы, способные жить и развиваться только при отсутствии свободного кислорода. Получают энергию за счёт окисления органических или (реже) неорганических веществ без участия свободного кислорода. К анаэробам… … Биологический энциклопедический словарь

Все живые организмы делятся на аэробов и анаэробов, включая бактерий. Поэтому существует два типа бактерий в организме человека и вообще в природе – аэробные и анаэробные. Аэробы должны получать кислород , чтобы жить, тогда как он не нужен вообще или не обязателен . И те, и другие типы бактерий играют важную роль в экосистеме, принимая участие в разложении органических отходов. Но среди анаэробов много видов, которые способны вызывать проблемы со здоровьем у человека и животных.

Люди и животные, а также большинство грибов и т.д. – все обязательные аэробы, которым нужно дышать и вдыхать кислород, чтобы выжить.

Анаэробные бактерии в свою очередь делятся на:

  • факультативные (условные) – нуждаются в кислороде для более эффективного развития, но могут обходится без него;
  • облигатные (обязательные) – кислород для них смертелен и убивает через некоторое время (оно зависит от вида).

Анаэробные бактерии способны жить в местах, где мало кислорода, таких как человеческая ротовая полость, кишечник. Многие из них вызывают заболевания в тех областях человеческого организма, где меньше кислорода, – горле, во рту, кишечнике, среднем ухе, ранах (гангрены и абсцессы), внутри прыщей и т.д. Помимо этого есть и полезные виды, помогающие пищеварению.

Аэробные бактерии, по сравнению с анаэробными, используют O2 для клеточного дыхания. Анаэробное же дыхание означает энергетический цикл с меньшей эффективностью для производства энергии. Аэробное дыхание – это энергия, выделяемая сложным процессом, когда O2 и глюкоза метаболизируются вместе внутри митохондрий клетки.

При сильных физических нагрузках организм человека может испытывать кислородное голодание. Это вызывает переключение на анаэробный метаболизм в скелетных мышцах, в процессе которого вырабатываются кристаллы молочной кислоты в мышцах, так как углеводы расщепляются не полностью. После этого мышцы позже начинают болеть (крепатура) и лечатся путем массирования области для ускорения растворения кристаллов и естественным вымыванием их кровотоком со временем.

Анаэробные и аэробные бактерии развиваются и размножаются при ферментации – в процессе разложения органических веществ при помощи ферментов. При этом аэробные бактерии используют кислород, присутствующий в воздухе для энергетического метаболизма, по сравнению с анаэробными бактериями, которые не нуждаются в кислороде из воздуха для этого.

Это можно понять, проведя эксперимент, чтобы идентифицировать тип, выращивая аэробные и анаэробные бактерии в жидкой культуре. Аэробные бактерии соберутся сверху, чтобы вдохнуть больше кислорода и выжить, тогда как анаэробные – скорее соберутся на дне, чтобы избежать кислорода.

Почти все животные и люди являются обязательными аэробами, для которых требуется кислород для дыхания, тогда как стафилококки во рту являются примером факультативных анаэробов. Отдельные человеческие клетки также являются факультативными анаэробами: они переключаются на ферментацию молочной кислоты, если кислород недоступен.

Краткое сравнение аэробных и анаэробных бактерий

  1. Аэробные бактерии используют кислород, чтобы оставаться в живых.
    Анаэробные бактерии нуждаются в минимальном количестве кислорода или вообще умирают в его присутствии (зависит от видов) и, следовательно, избегают O2.
  2. Многие виды среди тех и других видов бактерий играют важную роль в экосистеме, принимая участия в разложении органических веществ – являются редуцентами. Но грибы в этом плане более важны.
  3. Анаэробные бактерии являются причиной различных заболеваний различных заболеваний, от боли в горле до ботулизма, столбняка и других.
  4. Но среди анаэробных бактерий также присутствуют и те, что приносят пользу, например, расщепляют вредные для человека растительные сахара в кишечнике.
Понравилась статья? Поделитесь ей