Контакты

Какое животное имеет один круг кровообращения. Сердечно-сосудистая система рыб Филогенез, или эволюция кругов кровообращения

Конечно, у рыб, и у других водных жителей есть сердце, которое имеет схожие особенности с человеческим, выполняя свою основную функцию по снабжению организма кровью. В отличие от человеческой системы кровобращения, у рыб всего один круг и тот замкнутый. У простых безхрящевых рыб поток крови происходит по прямым линиям, а у высших хрящевых - по форме английской буквы S. Такое отличие обусловлено более сложным строением и различным В начале статьи рассмотрим сердце простых рыб, а после этого перейдем к удивительным хрящевым обитателям водного мира.

Важный орган

Сердце - это основной и главный орган любой У рыб, как и у человека и других животных имеется может показаться странным, ведь рыбы холоднокровные животные, в отличие от нас. Этот орган представляет из себя мышечный мешок, который постоянно сокращается, тем самым качая кровь всему организму.

Какое сердце у рыб и как происходит движение крови, вы сможете узнать, прочитав информацию в этой статье.

Размер органа

Размеры сердца зависят от общей массы тела, поэтому чем больше рыба, тем больше её "мотор". Наше сердце сравнивают с величиной кулака, у рыб такой возможности нет. Но как известно из уроков биологии, у мелкой рыбёшки сердце величиной всего несколько сантиметров. А вот у крупных представителей подводного мира орган может достигать даже двадцати-тридцати сантиметров. К таким рыбам можно отнести сома, щуку, карпа, осетра и других.

Где находится сердце?

Если кого-то волнует вопрос о том, сколько сердец у рыбы, сразу ответим - одно. Удивительно, что этот вопрос может вообще возникнуть, но как показывает практика, может. Очень часто при чистке рыбы хозяйки даже не подозревают, что могут с лёгкостью отыскать сердце. Как и у человека, сердце рыб находится в переднем отделе тела. Если, быть точнее, то прямо под жабрами. С обеих сторон сердце защищено рёбрами, как и наше. На рисунке, который вы видите ниже, главный орган рыб обозначен номером один.

Строение

Учитывая особенности дыхания рыб и наличие у них жабр, сердце устроенно по-другому, чем у наземных животных. Визуально сердце рыб по форме похоже на наше. Маленький красный мешочек, с небольшим бледно-розовым мешочком снизу и есть этот орган.

Сердце хладнокровных водных обитателей имеет всего две камеры. А именно желудочек и предсердие. Располагаются они в тесном соседстве, а если быть точнее, один над другим. Желудочек находится под предсердием и отличается более светлым оттенком. Рыбы имеют сердце, состоящее из мышечной ткани, это обусловлено тем, что оно выполняет роль насоса и беспрерывно сокращается.

Схема кровообращения

Сердце рыб соединяется с жабрами при помощи артерий, которые расположены по обе стороны от главной брюшной артерии. Она ещё называется брюшной аортой, кроме этого, со всего тела к предсердию ведут тонкие вены, по которым течёт кровь.

Кровь рыбы насыщена углекислым газом, который должен быть переработан следующим образом. Проходя по венам, попадает кровь в сердце рыб, где с помощью предсердия перекачивается по артериям в жабры. Жабры, в свою очередь, снабжены множеством тонких капилляров. Эти капилляры проходят по всем жабрам и помогают быстро транспортировать перекачанную кровь. После этого, именно в жабрах углекислый газ перемешивается и меняется на кислород. Вот поэтому важно, чтобы вода, где живут рыбы, была насыщена кислородом.

Кислородная кровь продолжает своё путешествие по организму рыбы и направляется в основную аорту, которая находится над хребтом. Из этой артерии ответвляются множество капилляров. В них начинается оборот крови, точнее сказать, обмен, ведь как мы помним, из жабр вернулась кровь, насыщенная кислородом.

В результате получается замещение крови в организме рыбы. Кровь из артерий, которая обычно выглядит насыщенно-красной, меняется на кровь из вен, которая намного темнее.

Направление кровообращения

Рыб представляют собой предсердие и желудочек, которые снабжены особыми клапанами. Именно за счёт этих клапанов происходит движение крови только в одном направлении, исключая обратный заброс. Это весьма важно для живого организма.

Вены направляют кровь в предсердие, а оттуда она течёт ко второй камере сердца рыбы, а после к особым органам - жабрам. Последнее движение происходит с помощью основной брюшной аорты. Таким образом, можно увидеть, что сердце рыб делает множество бесконечных сокращений.

Сердце хрящевые рыбы

Этот особый который характеризуется наличием черепа, позвоночника и плоских жабр. Самым известным представителем этого класса можно назвать акул и скатов.

Как и у их безхрящевых сородичей, сердце хрящевых рыб имеет две камеры и один Процесс обмена углекислого газа на кислород происходит таким же путём, как было описано выше, только с несколькими особенностями. К таким относится наличие брызгальца, которое помогает воде попадать в жабры. А все потому, что жабры этих рыб располагаются в брюшной области.

Ещё одной отличительной особенностью можно считать наличие такого органа, как селезёнка. Она, в свою очередь, является конечной остановкой крови. Это необходимо для того, чтобы в момент особой активности произошла быстрая подача последней в нужный орган.

Кровь хрящевых рыб больше насыщена кислородом, из-за большого количества эритроцитов. А всё из-за повышенной активности работы почек, где и происходит их выработка.

В кровеносной системе рыб, по-сравнению с ланцетниками, появляется настоящее сердце. Оно состоит из двух камер, т. е. сердце рыб двухкамерное . Первая камера - это предсердие, вторая камера - это желудочек сердца. Кровь сначала попадает в предсердие, затем мышечным сокращением проталкивается в желудочек. Далее в результате его сокращения изливается в крупный кровеносный сосуд.

Сердце рыб находится в околосердечной сумке, расположенной за последней парой жаберных дуг в полости тела.

Как и у всех хордовы, кровеносная система рыб замкнутая . Это значит, что нигде по пути своего следования кровь не покидает сосудов и не изливается в полости тела. Чтобы обеспечить обмен веществ между кровью и клетками всего организма, крупные артерии (сосуды, несущие кровь, насыщенную кислородом) постепенно ветвятся на более мелкие. Самые мелкие сосуды - капилляры. Отдав кислород и забрав углекислый газ, капилляры снова объединяются в более крупные сосуды (но уже венозные).

У рыб только один круг кровообращения . При двухкамерном сердце по-другому быть и не может. У более высокоорганизованных позвоночных (начиная с земноводных) появляется второй (легочный) круг кровообращения. Но у этих животных и сердце трехкамерное или даже четырехкамерное.

Через сердце протекает венозная кровь , отдавшая кислород клеткам тела. Далее эту кровь сердце толкает в брюшную аорту, который идет к жабрам и ветвится на приносящие жаберные артерии (но несмотря на название «артерии» они содержат венозную кровь). В жабрах (а конкретно, в жаберных лепестках) из крови в воду выделяется углекислый газ, а из воды в кровь просачивается кислород. Происходит это в результате разницы в их концентрации (растворенные газы идут туда, где их меньше). Обогатившись кислородом, кровь становится артериальной. Выносящие жаберные артерии (уже с артериальной кровью) впадают в один крупный сосуд - спинную аорту. Она проходит под позвоночником вдоль тела рыбы и от нее берут начало более мелкие сосуды. От спинной аорты также отходят сонные артерии, идущие к голове и снабжающие кровью в том числе головной мозг.

Перед тем как попасть в сердце венозная кровь проходит через печень, где очищается от вредных веществ.

В кровеносной системе костных и хрящевых рыб есть небольшие различия. В основном это касается сердца. У хрящевых рыб (и некоторых костных) расширенный участок брюшной аорты сокращается наряду с сердцем, а у большинства костных рыб - нет.

Кровь рыб красная, в ней присутствуют эритроциты с гемоглобином, связывающим кислород. Однако эритроциты рыб имеют овальную форму, а не дисковидную (как, например, у человека). Количество крови, текущей по кровеносной системе, у рыб меньше, чем у наземных позвоночных.

Сердце рыб бьется не часто (около 20-30 ударов в минуту), и количество сокращений зависит от температуры окружающей среды (чем теплее, тем чаще). Поэтому их кровь течет не так быстро и, следовательно, обмен веществ относительно медленный. Это, например, влияет на то, что рыбы - холоднокровные животные.

У рыб органами кроветворения являются селезенка и соединительная ткань почек.

Несмотря на то, что описанная кровеносная система рыб характерна для подавляющего большинства из них, у двоякодышащих и кистеперых она несколько отличается. У двоякодышащих в сердце появляется неполная перегородка и появляется подобие легочного (второго) круга кровообращения. Но этот круг проходит не через жабры, а через плавательный пузырь, превращенный в легкое.

© Использование материалов сайта только по согласованию с администрацией.

В человеческом организме кровеносная система устроена так, чтобы полностью отвечать его внутренним потребностям. Немаловажную роль в продвижении крови играет наличие замкнутой системы, в которой разделены артериальный и венозный кровяные потоки. И осуществляется это с помощью наличия кругов кровообращения.

Историческая справка

В прошлом, когда под рукой у ученых еще не было информативных приборов, способных изучать физиологические процессы на живом организме, величайшие деятели науки вынуждены были заниматься поиском анатомических особенностей у трупов. Естественно, что у умершего человека сердце не сокращается, поэтому некоторые нюансы приходилось домысливать самостоятельно, а иногда и попросту фантазировать. Так, еще во втором веке нашей эры Клавдий Гален, обучающийся по трудам самого Гиппократа, предполагал, что артерии содержат в своем просвете воздух вместо крови. На протяжении дальнейших столетий было выполнено немало попыток объединить и связать воедино имеющиеся анатомические данные с позиции физиологии. Все ученые знали и понимали, как устроена система кровообращения, но вот как это работает?

Колоссальный вклад в систематизацию данных по работе сердца внесли ученые Мигель Сервет и Уильям Гарвей в 16-м веке. Гарвей, ученый, впервые описавший большой и малый круги кровообращения, в 1616 году определил наличие двух кругов, но вот как связаны между собой артериальное и венозное русло, он объяснить в своих трудах не мог. И лишь впоследствии, в 17-м веке, Марчелло Мальпиги, один из первых начавший использовать микроскоп в своей практике, открыл и описал наличие мельчайших, невидимых невооруженным глазом капилляров, которые служат связующим звеном в кругах кровообращения.

Филогенез, или эволюция кругов кровообращения

В связи с тем, что по мере эволюции животные класса позвоночных становились все более прогрессивными в анатомо-физиологическом отношении, им требовалось сложное устройство и сердечно-сосудистой системы. Так, для более быстрого движения жидкой внутренней среды в организме позвоночного животного появилась необходимость замкнутой системы циркуляции крови. По сравнению с иными классами животного царства (например, с членистоногими или с червями), у хордовых появляются зачатки замкнутой сосудистой системы. И если у ланцетника, к примеру, отсутствует сердце, но существует брюшная и спинная аорта, то у рыб, амфибий (земноводных), рептилий (пресмыкающихся) появляется двух- и трехкамерное сердце соответственно, а у птиц и млекопитающих – четырехкамерное сердце, особенностью которого является средоточие в нем двух кругов кровообращения, не смешивающихся между собой.

Таким образом, наличие у птиц, млекопитающих и человека, в частности, двух разделенных кругов кровообращения – это не что иное, как эволюция кровеносной системы, необходимая для лучшего приспособления к условиям окружающей среды.

Анатомические особенности кругов кровообращения

Круги кровообращения – это совокупность кровеносных сосудов, представляющая собой замкнутую систему для поступления во внутренние органы кислорода и питательных веществ посредством газообмена и обмена нутриентами, а также для выведения из клеток двуокиси углерода и иных продуктов метаболизма. Для организма человека характерны два круга – системный, или большой круг, а также легочной, называемый также малым кругом.

Видео: круги кровообращения, мини-лекция и анимация


Большой круг кровообращения

Основной функцией большого круга является обеспечение газообмена во всех внутренних органах, кроме легких. Он начинается в полости левого желудочка; представлен аортой и ее ответвлениями, артериальным руслом печени, почек, головного мозга, скелетной мускулатуры и других органов. Далее данный круг продолжается капиллярной сетью и венозным руслом перечисленных органов; и посредством впадения полой вены в полость правого предсердия заканчивается в последнем.

Итак, как уже сказано, начало большого круга – это полость левого желудочка. Сюда направляется артериальный кровяной поток, содержащий в себе большую часть кислорода, нежели двуокиси углерода. Этот поток в левый желудочек попадает непосредственно из кровеносной системы легких, то есть из малого круга. Артериальный поток из левого желудочка посредством аортального клапана проталкивается в крупнейший магистральный сосуд – в аорту. Аорту образно можно сравнить со своеобразным деревом, которое имеет множество ответвлений, потому что от нее отходят артерии ко внутренним органам (к печени, почкам, желудочно-кишечному тракту, к головному мозгу – через систему сонных артерий, к скелетным мышцам, к подкожно-жировой клетчатке и др). Органные артерии, также имеющие многочисленные разветвления и носящие соответственные анатомии названия, несут кислород в каждый орган.

В тканях внутренних органов артериальные сосуды подразделяются на сосуды все меньшего и меньшего диаметра, и в результате формируется капиллярная сеть. Капилляры – это наимельчайшие сосуды, практически не имеющие среднего мышечного слоя, а представленные внутренней оболочкой – интимой, выстланной эндотелиальными клетками. Просветы между этими клетками на микроскопическом уровне настолько велики по сравнению с другими сосудами, что позволяют беспрепятственно проникать белкам, газам и даже форменным элементам в межклеточную жидкость окружающих тканей. Таким образом, между капилляром с артериальной кровью и жидкой межклеточной средой в том или ином органе происходит интенсивный газообмен и обмен других веществ. Кислород проникает из капилляра, а углекислота, как продукт метаболизма клеток – в капилляр. Осуществляется клеточный этап дыхания.

После того, как в ткани перешло большее количество кислорода, а из тканей была удалена вся углекислота, кровь становится венозной. Весь газообмен осуществляется с каждым новым притоком крови, и за тот промежуток времени, пока она движется по капилляру в сторону венулы – сосудика, собирающего венозную кровь. То есть с каждым сердечным циклом в том или ином участке организма осуществляется поступление кислорода в ткани и удаление из них двуокиси углерода.

Указанные венулы объединяются в вены покрупнее, и формируется венозное русло. Вены, аналогично артериям, носят те названия, в каком органе они располагаются (почечные, мозговые и др). Из крупных венозных стволов формируются притоки верхней и нижней полой вены, а последние затем впадают в правое предсердие.

Особенности кровотока в органах большого круга

Некоторые из внутренних органов имеют свои особенности. Так, например, в печени существует не только печеночная вена, «относящая» венозный поток от нее, но и воротная, которая наоборот, приносит кровь в печеночную ткань, где выполняется очищение крови, и только потом кровь собирается в притоки печеночной вены, чтобы попасть к большому кругу. Воротная вена приносит кровь от желудка и кишечника, поэтому все, что человек съел или выпил, должно пройти своеобразную «очистку» в печени.

Кроме печени, определенные нюансы существуют и в других органах, например, в тканях гипофиза и почек. Так, в гипофизе отмечается наличие так называемой «чудесной» капиллярной сети, потому что артерии, приносящие кровь в гипофиз из гипоталамуса, разделяются на капилляры, которые затем собираются в венулы. Венулы, после того, как кровь с молекулами релизинг-гормонов собрана, вновь разделяются на капилляры, а затем уже формируются вены, относящие кровь от гипофиза. В почках дважды на капилляры разделяется артериальная сеть, что связано с процессами выделения и обратного всасывания в клетках почек – в нефронах.

Малый круг кровообращения

Его функцией является осуществление газообменных процессов в легочной ткани с целью насыщения «отработанной» венозной крови кислородными молекулами. Он начинается в полости правого желудочка, куда из право-предсердной камеры (из «конечной точки» большого круга) поступает венозный кровяной поток с крайне незначительным количеством кислорода и с большим содержанием углекислоты. Эта кровь посредством клапана легочной артерии продвигается в один из крупных сосудов, называемый легочным стволом. Далее венозный поток двигается по артериальному руслу в легочной ткани, которое также распадается на сеть из капилляров. По аналогии с капиллярами в других тканях, в них осуществляется газообмен, вот только в просвет капилляра поступают молекулы кислорода, а в альвеолоциты (клетки альвеол) проникает углекислота. В альвеолы при каждом акте дыхания поступает воздух из окружающей среды, из которого кислород через клеточные мембраны проникает в плазму крови. С выдыхаемым воздухом при выдохе поступившая в альвеолы углекислота выводится наружу.

После насыщения молекулами O 2 кровь приобретает свойства артериальной, протекает по венулам и в конечном итоге добирается до легочных вен. Последние в составе четырех или пяти штук открываются в полость левого предсердия. В результате, через правую половину сердца протекает венозный кровяной поток, а через левую половину – артериальный; и в норме эти потоки смешиваться не должны.

В ткани легких имеется двойная сеть капилляров. При помощи первой осуществляются газообменные процессы с целью обогащения венозного потока молекулами кислорода (взаимосвязь непосредственно с малым кругом), а во второй осуществляется питание самой легочной ткани кислородом и нутриентами (взаимосвязь с большим кругом).


Дополнительные круги кровообращения

Данными понятиями принято выделять кровоснабжение отдельных органов. Так, например, к сердцу, которое больше других нуждается в кислороде, артериальный приток осуществляется из ответвлений аорты в самом ее начале, которые получили название правой и левой коронарных (венечных) артерий. В капиллярах миокарда происходит интенсивный газообмен, а венозный отток осуществляется в коронарные вены. Последние собираются в коронарный синус, который открывается прямо в право-предсердную камеру. Таким путем осуществляется сердечный, или коронарный круг кровообращения.

венечный (коронарный) круг кровообращения в сердце

Виллизиев круг представляет собой замкнутую артериальную сеть из мозговых артерий. Мозговой круг обеспечивает дополнительное кровоснабжение мозга при нарушении мозгового кровотока по другим артериям. Это защищает столь важный орган от недостатка кислорода, или гипоксии. Мозговой круг кровообращения представлен начальным сегментом передней мозговой артерии, начальным сегментом задней мозговой артерии, передними и задними соединительными артериями, внутренними сонными артериями.

Виллизиев круг в мозге (классический вариант строения)

Плацентарный круг кровообращения функционирует только во время вынашивания плода женщиной и осуществляет функцию «дыхания» у ребенка. Плацента формируется, начиная с 3-6 недели беременности, и начинает функционировать в полную силу с 12-й недели. В связи с тем, что легкие плода не работают, поступление кислорода в его кровь осуществляется посредством потока артериальной крови в пупочную вену ребенка.

кровообращение плода до рождения

Таким образом, всю кровеносную систему человека можно условно разделить на отдельные взаимосвязанные участки, выполняющие свои функции. Правильное функционирование таких участков, или кругов кровообращения, является залогом здоровой работы сердца, сосудов и всего организма в целом.

Имеют замкнутую кровеносную систему, представленную сердцем и сосудами. В отличие от высших животных рыбы имеют один круг кровообращения (за исключением двоякодышащих и кистёперых).

Сердце у рыб двухкамерное: состоит из предсердия, желудочка, венозной пазухи и артериального конуса, поочерёдно сокращающихся своими мускульными стенками. Ритмично сокращаясь, оно движет кровь по замкнутому кругу.

По сравнению с наземными животными, сердце рыб очень мало и слабо. Его масса обычно не превышает 0,33–2,5%, в среднем 1 % массы тела, тогда как у млекопитающих оно достигает 4,6%, а у птиц - 10–16%.
Слабое у рыб и кровяное давление.
Рыбы имеют и малую частоту сокращений сердца: 18–30 ударов в минуту, но при низких температурах она может уменьшиться до 1–2; у рыб, переносящих вмерзание в лед зимой, пульсация сердца в этот период вообще прекращается.
Кроме этого, рыбы имеют малое количество крови по сравнению с высшими животными.

Но все это объясняется горизонтальным положением рыбы в окружающей среде (нет необходимости выталкивать кровь наверх), а также жизнью рыбы в воде: в среде, в которой сила земного притяжения сказывается намного меньше чем на воздухе.

Кровь от сердца оттекает по артериям, а к сердцу - по венам.

Из предсердия она выталкивается в желудочек, затем в артериальный конус, а затем в большую брюшную аорту и доходит до , в которых происходит газообмен: кровь в жабрах обогащается кислородом и освобождается от углекислого газа. Красные клетки крови рыб - эритроциты содержат гемоглобин, связывающий в жабрах кислород, а в органах и тканях - углекислый газ.
Способность гемоглобина в крови рыб извлекать кислород у разных видов различна. Быстро плавающие, живущие в богатых кислородом проточных водах рыбы имеют клетки гемоглобина, обладающие большой способностью к вязке кислорода.

Богатая кислородом артериальная кровь имеет яркий алый цвет.

После жабр кровь по артериям попадает в головной отдел и дальше в спинную аорту. Проходя по спинной аорте, кровь доставляет кислород к органам и в мускулатуру туловища и хвоста. Спинная аорта тянется до конца хвоста, от нее по пути крупные сосуды отходят к внутренним органам.

Обедненная кислородом и насыщенная углекислым газом венозная кровь рыбы имеет тёмно-вишнёвый цвет.

Отдав кислород органам и собрав углекислый газ, кровь по крупным венам идёт к сердцу и предсердию.

Организм рыбы имеет свои особенности и в кроветворении:

Многие органы могут образовывать кровь: жаберный аппарат, кишечник (слизистая), сердце (эпителиальный слой и эндотелий сосудов), селезёнка, сосудистая кровь, лимфоидный орган (скопления кроветворной ткани – ретикулярного синцития - под крышей черепа).
В периферической крови рыбы могут находиться зрелые и молодые эритроциты.
Эритроциты, в отличие от крови млекопитающих, имеют ядро.

Кровь рыбы имеет внутреннее осмотическое давление.

На настоящий момент установлено 14 систем групп крови рыб.

39 Найдите ошибки в приведѐнном тексте. Укажите номера предложений, в которых они допущены,

Исправьте ошибки.

Появлению первых представителей типа Плоские черви предшествовало появление ряда крупных

Ароморфозов.

У плоских червей сформировалось двухслойное строение тела – основа для формирования многих

Органов и систем органов.

У них появилась лучевая симметрия тела, обеспечивающая свободное плавание в воде.

Ориентации в пространстве способствовало возникновение органов чувств и диффузной нервной

Системы.

Появились пищеварительная и выделительная системы.

Сформировались постоянные половые железы, которые обусловили наиболее эффективные

Формы полового размножения.

Ошибки допущены в предложениях 2, 3, 4.

2. неверно указано количество слоѐв тела - плоские черви трехслойные животные;

3. у плоских червей двусторонняя симметрия;

У плоских червей стволовая нервная система.

Найдите ошибки в приведенном тексте. Укажите номера предложений, в которых они сделаны,

Исправьте их.

1. Цианобактерии (сине-зелѐные) наиболее древние организмы, их относят к прокариотам.

Клетки имеют толстую клеточную стенку.

У цианобактерий имеется хлорофилл, в их клетках образуются органические вещества из

Неорганических.

Фотосинтез у цианобактерий происходит в хлоропластах.

В мелких рибосомах синтезируются белки.

Синтез АТФ происходит в митохондриях.

Ошибки в предложениях 3, 5, 7.

У цианобактерий кольцевая хромосома обособлена от цитоплазмы ядерной оболочкой.

У цианобактерий нет ядерной оболочки.

Фотосинтез у цианобактерий происходит в хлоропластах. У цианобактерий нет мембранных

Органоидов, в том числе хлоропластов.

Синтез АТФ происходит в митохондриях. У цианобактерий нет мембранных органоидов, в том

Числе митохондрий.

41 Найдите ошибки в приведѐнном тексте. Укажите номера предложений, в

Которых они сделаны, исправьте их.

Бурые водоросли обитают в морях и состоят из разнообразных тканей.

В их клетках наряду с хлорофиллом содержатся и другие пигменты, улавливающие солнечный свет.

Водоросли способны образовывать органические вещества из неорганических как при


Фотосинтезе, так и при хемосинтезе.

Водоросли поглощают воду и минеральные соли с помощью ризоидов.

Водоросли - основной поставщик кислорода в морях и океанах.

Морскую водоросль - ламинарию человек употребляет в пищу.

Ошибки допущены в предложениях:-

1) 1 - бурые водоросли не имеют тканей;

2) 3 - в водорослях не происходит хемосинтез;

Водоросли поглощают воду и минеральные соли всей поверхностью тела, а ризоиды служат

Для прикрепления к субстрату.

42 Найдите ошибки в приведѐнном тексте. Укажите номера предложений, в которых они сделаны,

Исправьте их.

1. Кенгуру − представитель сумчатых млекопитающих.

Они обитают в Австралии и Южной Америке.

Питаются кенгуру в основном личинками насекомых.

4. После родов детѐныш кенгуру заползает в сумку, где питается молоком.

Такой способ вынашивания связан с тем, что у кенгуру плохо развита плацента.

При передвижении кенгуру опирается на четыре лапы, что позволяет совершать длинные прыжки.

Ошибки в предложениях:

Предложение 2 – кенгуру живут только в Австралии.

Предложение 3 – кенгуру питаются только растениями.

Предложение 6 – кенгуру прыгает на двух лапах

43 Найдите ошибки в приведѐнном тексте. Укажите номера предложений, в которых они сделаны,

Исправьте их.

Понравилась статья? Поделитесь ей