Контакты

Интересное о фосфоре.

Более трехсот лет отделяют нас от того момента, когда гамбургский алхимик Геннинг Бранд открыл новый элемент - . Подобно другим алхимикам, Бранд пытался отыскать эликсир жизни или философский камень, с помощью которых старики молодеют, больные выздоравливают, а неблагородные превращаются в . Не забота о благе людском, а корысть руководила Брандом. Об этом свидетельствуют факты из истории единственного настоящего открытия, сделанного этим алхимиком.

В ходе одного из опытов он выпарил мочу, смешал остаток с углем, песком и продолжил выпаривание. Вскоре в реторте образовалось вещество, светившееся в темноте. Правда, kaltes Feuer (холодный огонь), или «мой огонь», как Бранд его называл, не превращал в и не изменял облика старых людей, но , что полученное вещество светилось без подогрева, было необычно и ново.

Этим свойством нового Бранд не замедлил воспользоваться. Он стал показывать различным привилегированным лицам, получая от них подарки и деньги. Хранить тайну получения фосфора было нелегко, и вскоре Бранд продал ее дрезденскому химику И. Крафту. Число демонстраторов фосфора увеличилось, когда рецепт его изготовления стал известен И. Кункелю и К. Кирхмейеру. В 1680 г. независимо от предшественников новый элемент был получен знаменитым английским физиком и химиком Робертом Бойлем. Но вскоре Бойль умер, а его ученик А. Ганквиц изменил чистой науке и вновь возродил «фосфорную спекуляцию». Лишь в 1743 г. А. Маркграф отыскал более совершенный способ получения фосфора и опубликовал свои данные для всеобщего сведения. Это событие положило конец брандовскому бизнесу и послужило началом серьезного изучения фосфора и его соединений.

На первом, пятидесятилетием этапе истории фосфора, кроме открытия Бойля, лишь одно событие отмечено историей науки: в 1715 г. Генсинг установил наличие фосфора в мозговой ткани. После опытов Маркграфа история элемента, приобретшего много лет спустя номер 15, стала историей многих больших открытий.

Хронология этих открытий

В 1769 г. Ю. Ган доказал, что в костях содержится много фосфора. же самое подтвердил через два года знаменитый шведский химик К. Шееле, предложивший способ получения фосфора из золы, образующейся при обжиге костей.

Еще несколькими годами позже Ж. Л. Пруст и М. Клапрот, исследуя различные природные соединения, доказали, что широко распространен в земной коре, главным образом в виде фосфата кальция.

Больших успехов в изучении свойств фосфора достиг в начале 70-х годов XVIII в. великий французский химик Антуан Лоран . Сжигая фосфор с другими веществами в замкнутом объеме воздуха, доказал, что фосфор - самостоятельный элемент, а воздух имеет сложный состав и слагается по крайней мере из двух компонентов - кислорода и азота. «Таким образом он впервые поставил на ноги всю химию, которая в своей флогистической форме стояла на голове». Так Ф. Энгельс писал о работах в предисловии ко второму тому Ka-питала».

В 1709 г. Дондональд доказал, что соединения фосфора необходимы для нормального развития растений.

В 1839 г. другой англичанин, Лауз, впервые получил суперфосфат - фосфорное удобрение, легко усвояемое растениями.

В 1847 г. немецкий химик Шреттер, нагревая без доступа воздуха, подучил новую разновидность (аллотропную модификацию) элемента № 15 - , а уже в XX в., в 1934 г., американский физик П. Браджыен, изучая влияние высоких давлений на разные , выделил похожий на черный фосфор. Таковы основные вехи в истории элемента № 15. Теперь проследим» что последовало за каждым из этих открытий.

«В 1715 году Генсинг установил наличие фосфора в мозговой ткани… В 1769 году Ган доказал, что в костях содержится много фосфора»

Фосфор аналог азота

Хотя физические и химические свойства этих элементов очень сильно различаются, есть у них. и общее, в частности , что оба эти элемента совершенно необходимы животным и растениям. Академик А. Е. Ферсман называл фосфор «элементом жизни и мысли», ж это определение вряд ли можно отнести к категории литературных преувеличений. Фосфор обнаружен буквально во всех органах зеленых растений: в стеблях, корнях, листьях, но больше всего его в плодах и семенах. Растения накапливают фосфор и снабжают им животных.

В организме животных фосфор сосредоточен главным образом в скелете, мышцах и нервной ткани.

Из продуктов человеческого питания особенно богат фосфором желток куриных яиц.

Тело человека содержит в среднем около 1,5 кг элемента № 15. Из этого количества 1,4 кг приходится на кости, около 130 г-на мышцы и 12 г -на нервы и мозг. Почти все важнейшие физиологические процессы, происходящие в нашем организме, связаны с превращениями фосфор-оргапических веществ. В состав костей фосфор входит главным образом в виде фосфата кальция. Зубная эмаль - это тоже соединение фосфора, которое по составу и кристаллическому строению соответствует важнейшему минералу фосфора апатиту Ca5(P04)3(F, Сl).

Естественно, что, как и всякий жизненно необходимый элемент, фосфор совершает в природе круговорот. Из почвы его берут растения, от растений этот элемент попадает в организмы человека и животных. В почву фосфор возвращается с экскрементами и при гниении трупов. Фосфоробактерии переводят органический фосфор в неорганические соединения.

Однако в единицу времени из почвы выводится значительно больше фосфора, чем поступает в почву. Мировой урожай сейчас ежегодно уносит с полей больше 3 млн. т фосфора.

Естественно, что для получения устойчивых урожаев этот фосфор должен быть возвращен в почву, и потому нет ничего удивительного в том, что мировая добыча фосфоритной руды сейчас составляет значительно больше 100 млн. т в год.

«…Пруст и Клапрот доказали, что фосфор широко распространен в земной коре, главным образом в виде фосфата кальция»

В земной коре фосфор встречается исключительно в виде соединений. Это главным образом малорастворимые соли ортофосфорной кислоты; катионом чаще всего служит ион кальция.

На долю фосфора приходится 0,08% веса земной коры. По распространенности он занимает 13-е место среди всех элементов. Фосфор содержится не менее чем в 190 минералах, из которых главнейшие: фторапатит Ca5(P04)3F, гидроксилапатит Са5(Р04)3ОН, фосфорит Саэ(Р04)2 с примесями.

Фосфора делятся на первичные и вторичные. Из первичных особенно распространены апатиты, часто встречающиеся среди пород магматического происхождения. Эти образовались в момент становления земной коры.

В отличие от апатитов фосфориты залегают среди пород осадочного происхождения, образовавшихся в результате отмирания живых существ. Это вторичные .

В виде фосфидов железа, кобальта, никеля фосфор встречается в метеоритах. Разумеется, этот распространенный элемент есть и в морской воде (6 10-6%).

«Лавуазье доказал, что фосфор - самостоятельный химический элемент…»

Фосфор - неметалл (то, что раньше называли металлоид) средней активности. На наружной орбите атома фосфора находятся пять электронов, причем три из них не спарены. Поэтому он может проявлять валентности 3-, 3+ и 5+.

Для того чтобы фосфор проявлял 5+, необходимо какое-либо воздействие на атом, которое бы превратило в неспаренные два спаренных электрона последней орбиты.

Фосфор часто называют многоликим элементом. Действительно, в разных условиях он ведет себя по-разному, проявляя то окислительные, то восстановительные свойства. Многоликость фосфора - это и его способность находиться в нескольких аллотропных модификациях.

Пожалуй, самая известная модификация элемента № 15 -мягкий, как воск, белый или желтый фосфор. Это ее открыл Бранд, и благодаря ее свойствам элемент получил свое имя: по-гречески «фосфор» значит светящийся, светоносный. Молекула белого фосфора состоит из четырех атомов, построенных в форме тетраэдра. Плотность 1,83, температура плавления 44,1° С. ядовит, легко окисляется. Растворим в сероуглероде, жидких аммиаке и S02, бензоле, эфире. В воде почти не растворяется.

При нагревании без доступа воздуха выше 250° С превращается в красный. Это уже полимер, но не очень упорядоченной структуры. Реакционная способность у красного фосфора значительно меньше, чем у белого. Он не светится в темноте, не растворяется в сероуглероде, не ядовит. Плотность его намного больше, структура мелкокристаллическая.

ФОСФОР ПЭ

«Без фосфора нет мысли»

Содержится в мозговой ткани и костях человека.

Входит в состав минерального удобрения суперфосфат.

Красный фосфор используется в производстве спичек.

История открытия фосфора.

Древние фолианты сохранили для нас отдельные эпизоды из жизни отставного солдата и гамбургского купца. Звали его Хенниг Бранд (ок. 1630-?). Его купеческие дела шли не блестяще, и именно по этой причине он сремился выбраться из нищеты. Она его ужасно угнетала. И Бранд решил попытать счастья в алхимии. Тем более что в XVII в. в отличие от нашего XX в. считалось вполне возможным найти «философский камень», который способен превращать неблагородные металлы в золото.

Хенниг Бранд

Бранд провел уже множество опытов с различными веществами, но ничего дельного у него не получалось. Однажды он решил провести химический эксперимент с мочой. Выпарил ее почти досуха и оставшийся светло-желтый осадок смешал с углем и песком, нагревая в реторте без доступа воздуха. В результате Бранд получил новое вещество, которое обладало удивительным свойством-светиться в темноте.

Так в 1669 г. был открыт фосфор, играющий исключительно важную роль в живой природе: в растительном мире, в организме животных и человека.

Счастливый ученый не замедлил воспользоваться необычным свойством нового вещества и стал демонстрировать светящийся фосфор знатным особам за довольно высокое вознаграждение. Все, что соприкасалось с фосфором, приобретало способность светиться. Достаточно было помазать фосфором пальцы, волосы или предметы, и они вспыхивали таинственным голубовато-белым светом. Религиозно и мистически настроенные богатые люди того времени диву давались, смотря на различные манипуляции Бранда с этим «божественным» веществом. Он ловко использовал огромный интерес ученых и широкой публики к фосфору и стал продавать его по цене, превосходившей даже стоимость золота. X. Бранд производил фосфор в больших количествах и держал способ его получения в строжайшей тайне. Никто из других алхимиков не мог проникнуть в его лабораторию, и поэтому многие из них стали лихорадочно ставить различные опыты, стремясь раскрыть секрет изготовления фосфора.

«Блуждающие огни»

При разложении богатых фосфором соединений органического происхождения нередко образуются газообразные и жидкие вещества. Иногда можно наблюдать выделение газа с запахом гнилой рыбы-фосфористого водорода, или фосфина, РН3. Одновременно с фосфином идет образование другого продукта - дифосфина, Р2 Н4, представляющего собой жидкость. Пары дифосфина самовоспламеняются и поджигают газообразный фосфин. Этим объясняется появление так называемых «блуждающих огней» в таких местах, как кладбища, болота. «Блуждающие огни» и другие случаи свечения фосфора и его соединений вызывали суеверный страх у многих людей, не знакомых с сущностью этих явлений. Вот что о работе с газообразным фосфором вспоминает академик С.И. Вольфкович: «Фосфор получался в электрической печи, установленной в Московском университете на Моховой улице. Так как эти опыты проводились тогда в нашей стране впервые, я не предпринял тех предосторожностей, которые необходимы при работе с газообразным фосфором - ядовитым самовоспламеняющимся и светящимся голубоватым цветом элементом. В течение многих часов работы у электропечи часть выделяющегося газообразного фосфора настолько пропитала мою одежду и даже ботинки, что, когда ночью я шел из университета по темным, не освещенным тогда улицам Москвы, моя одежда излучала голубоватое сияние, а из-под ботинок (при трении их о тротуар) высекались искры. За мной каждый раз собиралась толпа, среди которой, несмотря на мои объяснения, немало было лиц, видевших во мне, «новоявленного» представителя потустороннего мира. Вскоре среди жителей района Моховой улицы и по всей Москве из уст в уста стали передаваться фантастические рассказы о светящемся монахе...» (http://www.alhimikov.net/phosfor/otkrytie.html)

Загадки о фосфоре.

1) Белый воздуха боится, покраснел чтоб сохраниться.

  1. Познакомьтесь все со мной!

Я свечусь во тьме ночной.

Разным быть могу на вид:

Если Белый – ядовит,

Если я по цвету красный,

То тогда я безопасный!

  1. Я светоносный элемент.

Я спичку вам зажгу в момент.

Сожгут меня - и под водой

Оксид мой станет кислотой.

Из истории спичек

Изобретателем первых фосфорных спичек оказался девятнадцатилетний француз Шарль Сориа. В 1831 г. юный экспериментатор к смеси бертолетовой соли с серой для ослабления ее взрывчатых свойств добавил белый фосфор. Эта идея оказалась на редкость удачной, поскольку смазанные полученным составом лучинки легко загорались при трении. Температура воспламенения таких спичек сравнительно небольшая - 30 °С. Молодой Ш. Сориа попытался получить патент на свое изобретение, но, к сожалению, это оказалось сделать гораздо сложнее, чем создать первые фосфорные спички. За патент нужно было внести слишком крупную сумму, а таких денег Ш. Сориа не имел. Спустя год фосфорные спички были созданы вновь немецким химиком Я. Каммерером.

Итак, завершился долгий путь утробного созревания первой спички и она родилась сразу в руках нескольких изобретателей. Однако судьбе было угодно вручить лавры первенства в этом открытии Якобу Фридриху Каммереру (1796-1857), а 1832 год сохранить для потомков как год рождения спичек, крупнейшего открытия XIX в., сыгравшего важную роль в истории развития человеческой культуры.

Лавры первооткрывателей спичек стремились получить многие, но история сохранила для нас из всех претендентов имя Я. Каммерера. В Россию первые фосфорные спички были привезены из Гамбурга в 1836 г. и продавались по очень дорогой цене - один рубль серебром за сотню. Имеются предположения, что наш великий поэт А. С. Пушкин в последний год своей жизни пользовался такими фосфорными спичками, работая при свечах долгими зимними вечерами.

Молодежь Петербурга не замедлила, конечно, щегольнуть фосфорными спичками на балах и в модных салонах, стремясь ни в чем не уступать Западной Европе. Жаль только, что ни одной поэтической строчки не успел А. С. Пушкин посвятить спичкам - прекрасному и очень важному изобретению, настолько полезному и привычному теперь, что мы даже не задумываемся о сложной судьбе появления спичек... Нам кажется, что спички всегда были рядом с нами. А на самом деле первая отечественная фабрика по производству спичек построена в Петербурге только в 1837 г.

Прошло немногим более 150 лет с тех пор, как жители государства Российского получили первые отечественные спички и, поняв важность этого изобретения, весьма быстро развернули спичечное производство.

В 1842 г. в одной Петербургской губернии существовало 9 спичечных фабрик, ежедневно производивших 10 млн. штук спичек. Цена на спички резко снизилась и не превышала 3-5 коп. медью за 100 штук. Способ изготовления спичек оказался настолько прост, что в России к середине XIX в. он стал носить характер кустарного промысла. Так, в 1843-1844 гг. было обнаружено, что спички в значительном количестве изготавливаются в домашних условиях.

Их производили в самых отдаленных уголках России предприим¬чивые крестьяне, укрываясь таким образом от налогов. Однако легкая воспламеняемость фосфора привела к большим пожарам. Многие села и деревни выгорали буквально дотла.

Виновником этих бедствий оказался белый фосфор, способный легко воспламеняться. При перевозке спички нередко загорались от трения. На пути спичечных обозов полыхали грандиозные пожары, и обезумевшие лошади с горящими повозками приносили немало бед.

В 1848 г. последовал высочайший императорский указ, подписанный Николаем I, допускавший изготовление зажигательных спичек только в столицах, причем спички должны были упаковываться в жестяные банки по 1000 штук. Далее в указе говорилось: «Обратить особое внимание на чрезвычайное распространение употребления зажигательных спичек, усмотреть изволили, что при случившихся в текущем году пожарах, потребивших в одних городах более на 12000000 рублей. серебром обывательских имуществ, поджигатели весьма часто совершали свое преступление посредством спичек».

Кроме того, белый фосфор- одно из самых ядовитых веществ.

Поэтому работа на спичечных фабриках сопровождалась серьезным заболеванием, получившим название фосфорного некроза, поражающего челюсти, т.е. омертвения клеток, а также сильного воспаления и кровоточения десен.

Но выход был найден, сравнительно быстро оказалось возможным заменить белый фосфор на красный, открытый в 1848 г. В отличие от белого эта разновидность фосфора совершенно безвредна. Красный фосфор ввели в состав спичечной массы. Но ожидания не оправдались. Спички загорались очень плохо. Они не находили сбыта. Фабриканты, которые начали было изготовление, разорились.

К середине XIX столетия было сделано множество выдающихся изобретений, а изготовление обыкновенной спички никак не могло найти удовлетворительного решения.

Проблема была решена в 1855 г. в Швеции. Безопасные спички в этом же году были представлены на Международной выставке в Париже и получили золотую медаль. С этого момента так называемые шведские спички начали свое триумфальное шествие по всему миру. Их главная особенность состояла в том, что они не воспламенялись при трении о любую твердую поверхность. Шведская спичка зажигалась только в том случае, если ее потереть о боковую поверхность коробки, покрытую специальной массой.

Таким -образом, «безопасный огонь» в шведских спичках рождался великолепным союзом силы трения и химической реакции.

Расскажем теперь, как устроена современная спичка . Масса спичечной головки на 60% состоит из бертолетовой соли, а также из горючих веществ-серы или каких-нибудь сульфидов металлов, например сульфида сурьмы. Чтобы воспламенение головки происходило медленно и равномерно, без взрыва, к массе добавляют так называемые наполнители - стеклянный порошок, оксид железа (III) и т.д. Связующим материалом служит клей. Бертолетову соль можно заменять веществами, в большом количестве содержащими кислород, например бихроматом калия. А из чего состоит намазка шкурки? Здесь основной компонент- красный фосфор. К нему добавляют оксид марганца (IV), толченое стекло и клей. (http://www.alhimikov.net/phosfor/otkrytie.html)

Применение фосфора

Один из самых распространенных элементов земной коры, в свободном состоянии не встречается из-за высокой химической активности. Он образует около 190 минералов.

Фосфор содержится во всех частях зеленых растений, еще больше его в плодах и семенах. Также содержится в животных тканях, входит в состав белков и других важнейших органических соединений (АТФ), является элементом жизни . В элементарном виде в обычных условиях представляет собой несколько устойчивых аллотропических модификаций (белый, красный, черный, металлический). Они различаются по цвету, плотности и другим физическим характеристикам. В организме фосфор сосредоточен главным образом в скелете, мышцах и нервной ткани.

Зачем нужно?

Является важнейшим биогенным элементом и, в то же время, находит широкое применение в промышленности. Красный фосфор применяют в производстве спичек. Так же используется в производстве взрывчатых веществ, зажигательных составов, топлив, противозадирных смазочных материалов. В сельском хозяйстве этот элемент востребован для создания удобрений.

Фосфор представлен в живых клетках в виде орто- и пирофосфорной кислот, входит в состав нуклеотидов, нуклеиновых кислот, фосфопротеидов, фосфолипидов, коферментов, ферментов. Кости человека состоят из гидроксилапатита, а в состав зубной эмали входит фторапатит. Основную роль в превращениях соединений фосфора в организме человека и животных играет печень. Обмен фосфорных соединений регулируется гормонами и витамином D . Большинство фосфорорганических соединений обладает биологической активностью, поэтому часть из них используется в качестве лекарств, другая — как средства борьбы с сельскохозяйственными вредителями.

Фосфор — важнейший элемент, входящий в состав белков, нуклеиновых кислот, костной ткани . Соединения фосфора принимают участие в обмене энергии (аденозинтрифосфорная кислота и креатинфосфат являются аккумуляторами энергии), с их превращениями связаны мышечная и умственная деятельность, жизнеобеспечение организма. Фосфор влияет на деятельность сердца и почек.

Из продуктов питания особенно богат фосфором желток куриных яиц. Относительно много фосфора находится в рыбе, хлебе, мясе, молоке и сыре. Еще больше фосфора находится в фасоли, горохе, овсяной, перловой и ячневой крупах, а также в ягодных культурах, орехах, петрушке, капусте, моркови, чесноке, шпинате.

Впервые фосфор открыл алхимик Хенниг Бранд из Гамбурга в 1669 году. Получив светящееся в темноте вещество, ученый назвал его сначала «холодным огнем». Вторичное название «фосфор» происходит от греческих слов «фос» — свет и «феро» — несу.

В теле человека содержится в среднем около 1,5 кг элемента: 1,4 кг приходится на кости, около 130 г — на мышцы и 12 г — на нервы и мозг. В составе костей фосфор главным образом представлен в виде фосфата кальция, а в зубная эмаль по составу и кристаллическому строению соответствует апатиту.

Суточная потребность человека в фосфоре 800—1500 мг. При его дифиците в организме развиваются различные заболевания костей. Для правильного питания важно соотношение фосфора с кальцием (2:3). При избытке первого может происходить выведение кальция из костей, при избытке второго — развиваться мочекаменая болезнь.

Необходимо быть внимательным при работе с фосфором. Белый фосфор весьма ядовит: вызывает поражение костей, костного мозга, некроз челюстей. Он растворим в липидах. Летальная доза этого вещества для взрослого мужчины составляет 0,05—0,1 г. Попадая на кожу, дает тяжелые ожоги. Ядовитость красного фосфора в тысячи раз меньше, чем у белого . Он почти нетоксичен. Но его пыль, попадая в легкие, вызывает пневмонию при хроническом действии. При остром отравлении этим веществом появляются жжение во рту и желудке, головная боль, слабость, рвота. А через 2—3 суток развивается желтуха. Для хронических форм характерны нарушение кальциевого обмена, поражение сердечно-сосудистой и нервной систем. В качестве первой помощи при остром отравлении необходимы промывание желудка, слабительное, очистительные клизмы, внутривенно растворы глюкозы. При ожогах пораженные участки кожи необходимо обработать пораженные участки растворами медного купороса или соды.

В отличие от подавляющего большинства элементов состоит только из одного изотопа 31 P. В ядерных реакциях синтезировано несколько короткоживущих радиоактивных изотопов элемента № 15. Один из них - фосфор-30 оказался вообще первым изотопом, полученным искусственным путем. Это его получили в 1934 г. Фредерик и Ирен Жолио-Кюри при облучении алюминия альфа-частицами. Фосфор-30 имеет период полураспада 2,55 минуты и, распадаясь, излучает позитроны («положительные электроны»). Сейчас известны шесть радиоактивных изотопов фосфора. Наиболее долгоживущий из них 33 P имеет период полураспада 25 дней. Изотопы фосфора применяются главным образом в биологических исследованиях.

НАЧАЛО СУПЕРФОСФАТНОЙ ПРОМЫШЛЕННОСТИ. Первое в мире промышленное производство суперфосфата было организовано в 1842 г. в Англии. В России подобные предприятия появились в 1868 и 1871 гг. До революции в нашей стране было построено всего шесть суперфосфатных заводов, их общая производительность не превышала 50 тыс. т в год. В годы первой мировой войны, иностранной интервенции и гражданской войны четыре завода из шести вышли из строя, и в 1918 г. в нашей стране было выпущено всего 2,8 тыс. т суперфосфата. А всего через 20 лет, в 1938 г., по производству фосфорных удобрений Советский Союз занял первое место в Европе и второе место в мире. Сейчас доля пашей страны в мировом производстве фосфоритной руды и фосфорных удобрений составляет примерно четвертую часть.

СВИДЕТЕЛЬСТВУЕТ Д. Н. ПРЯНИШНИКОВ. «...Как бы правильно ни хранился и применялся навоз, он не может вернуть почве того, чего он сам не содержит, т. е. крупной доли фосфора, отчужденного из хозяйства в проданном зерне, костях животных, в молоке и пр.; таким образом, почва постепенно, но неуклонно теряет свой фосфор (или по крайней мере его усвояемую часть), и за известным пределом фосфор попадает в положение того «минимального фактора», которого наиболее недостает для получения хорошего урожая, как это совершенно правильно было подмечено еще Либихом». (Из статьи «О значении фосфатов для нашего земледелия и о расширении возможности непосредственного применения фосфоритов», 1924).

АПАТИТЫ ЗАПОЛЯРЬЯ. В 1926 г. А. Е. Ферсманом и его сотрудниками были открыты огромные запасы апатита на Кольском полуострове. Спустя много лет академик А. Е. Ферсман писал об этом месторождении: «.зеленый искристый апатит с серым нефелином образует сплошную стену в 100 м. На 25 км протягивается этот замечательный пояс хибинских тундр, огибая их кольцом. Исследования показали, что апатитовая руда уходит в глубину даже ниже поверхности океана, и около двух миллиардов тонн этих ценнейших ископаемых накоплено здесь в Хибинах, не имея себе равных нигде в мире» («Занимательная минералогия», 1937), На базе этого месторождения был построен горнохимический комбинат «Апатит» им. С. М. Кирова. Незадолго до войны было открыто еще одно очень крупное месторождение фосфорного сырья - фосфориты Kapa-Tay в Казахстане. Фосфориты есть и в других районах нашей страны, в частности в Подмосковье. Но лучшее сырье для производства фосфорных удобрений до сих пор дает апатитовый «пояс хибинских тундр».

КАК ВЫГЛЯДИТ АПАТИТ. Вновь обратимся к «Занимательной минералогии». «Апатит - это фосфорнокислый кальций , но внешний вид его такой разнообразный и странный, что недаром старые минералоги назвали его апатитом, что значит по-гречески «обманщик»: то это прозрачные кристаллики, до мелочей напоминающие берилл или даже кварц , то это плотные массы, неотличимые от простого известняка, то это радиально-лучистые шары, то порода зернистая и блестящая, как крупнозернистый мрамор».

КТО ЖЕ ПЕРВЫЙ? Французский историк Ф. Гефер утверждает, что общепринятое мнение, будто фосфор впервые получен алхимиком Г. Брандом в 1669 г., неверно. По его данным, фосфор умели получать еще в XII в. арабские алхимики, причем технология получения фосфора у них была такая же, как у Бранда: выпаривание мочи и нагревание сухого остатка с углем и песком. Если так, то человечество знакомо с элементом № 15 почти 800 лет.

КРАСНЫЙ И ФИОЛЕТОВЫЙ. Самые известные модификации фосфора - белая и красная, обе они используются в промышленности. Прочие разновидности элемента № 15 - фиолетовый, коричневый, черный фосфор - можно встретить только в лабораториях. Но фиолетовый фосфор стал известен людям намного раньше, чем красный. Русский ученый А. А. Мусин-Пушкин впервые получил его еще в 1797 г. В некоторых книгах можно встретить утверждение, что красный и фиолетовый фосфор - одно и то же. Но эти разновидности отличаются не только цветом. Кристаллы фиолетового фосфора крупнее. Красный фосфор получается при нагревании белого в замкнутом объеме уже при 250°С, а фиолетовый - только при 500°С.

«СВЕТЯЩИЙСЯ МОНАХ». Из воспоминаний академика С. И. Вольфковича: «Фосфор получался в электрической печи, установленной в Московском университете на Моховой улице. Так как эти опыты проводились тогда в нашей стране впервые, я не предпринял тех предосторожностей, которые необходимы при работе с газообразным фосфором - ядовитым, самовоспламеняющимся и светящимся голубоватым цветом элементом. В течение многих часов работы у электропечи часть выделяющегося газообразного фосфора настолько пропитала мою одежду и даже ботинки, что когда ночью я шел из университета по темным, не освещенным тогда улицам Москвы, моя одежда излучала голубоватое сияние, а из-под ботинок (при трении их о тротуар) высекались искры.

За мной каждый раз собиралась толпа, среди которой, несмотря на мои объяснения, немало было лиц, видевших во мне «новоявленного» представителя потустороннего мира. Вскоре среди жителей района Моховой и по всей Москве из уст в уста стали передаваться фантастические рассказы о «светящемся монахе»...

ЧУДЕСА БЕЗ ЧУДЕС. Церковь не раз пользовалась белым фосфором для одурачивания верующих. Известны, как минимум, два вида «чудес», к которым причастно это вещество. Чудо первое: свеча, загорающаяся сама. Делается это так: на фитиль наносят раствор фосфора в сероуглероде, растворитель довольно быстро испаряется, а оставшиеся на фитиле крупинки фосфора окисляются кислородом воздуха и самовоспламеняются. Чудо второе: «божественные» надписи, вспыхивающие на стенах. Тот же раствор, те же реакции. Если раствор достаточно насыщен, то надписи сначала светятся, а затем вспыхивают и исчезают.

ФОСФОРОРГАНИКА И ЖИЗНЬ. О роли фосфорорганическпх соединений в важнейших биохимических реакциях организма написаны многие тома. В любом учебнике биохимии эти вещества не только многократно упоминаются, но и подробно описываются. Без фосфорорганическпх соединений не мог бы идти процесс обмена углеводов в ткани мозга. Фосфорсодержащий фермент фосфорилаза способствует не только распаду, но и синтезу полисахаридов в мозгу. В процессе окисления углеводов в ткани мозга важную роль играют дифосфопиридиннуклеотид и неорганический фосфат. Другой важнейший процесс - сокращение мышц поддерживается энергией, выделяющейся при реакциях с участием аденозинфосфатов. При сокращении мышцы молекула аденозинтрифосфата (АТФ) распадается на аденозиндифосфат и неорганическую фосфорную кислоту. При этом освобождается много энергии (8-11 ккал/моль). О важнейшей роли этих веществ свидетельствует и тот факт, что в мышечной ткани всегда поддерживается постоянный уровень АТФ.

Наверное, никто не станет возражать, что мифология современного человека подчиняется тем же законам, что и любая другая мифология. Разница, пожалуй, только в том, что различные предметы и субстанции, обладающие магическими и сверхъестественными свойствами, в сознании современного человека заменяются на научные и технологические достижения. Очень интересно рассмотреть в этом качестве белый фосфор – один из самых распространенных артефактов в легендах о Великой отечественной и Второй мировой войне. Ему нередко приписывают чуть ли не сверхъестественные свойства. Например, невероятно широко распространены легенды о якобы фосфорной начинке реактивных снарядов, которыми стреляли знаменитые «Катюши». К сожалению, большинство историков, в том числе военных – гуманитарии, и даже ученые степени не защищают их от естественной тяги к мифическим толкованиям реальности.

Прежде всего, по этому поводу надо сказать, что определенная загадка тут действительно есть. Танкисты, находящиеся внутри среднего танка T-IV, скорее всего отделаются легким испугом, если в метре-двух от него разорвется мощная фугасная бомба. Самое худшее – если осколок повредит ствол орудия, но, скорее всего, после окончания авианалета им придется менять пару траков у гусеницы или каток. Ударная волна фугасного заряда имеет температуру несколько сотен градусов, что маловато даже для легкого танка, а осколки противоснарядную броню просто не пробивают. У РС-а осколки имеют еще меньшую силу, они вообще не в счет, зато ударная волна принципиально другая. Ее температура в радиусе нескольких метров достигает двух тысяч градусов, что намного выше разных пределов устойчивости любых типов стали. Если на снимке тех лет виден, например, изогнутый ствол орудия или оплавленные края металлических деталей – можно не сомневаться, это результат воздействия РСов. В Брестской крепости показывали немецкий автомат, наполовину расплавленный и вдавленный в кирпичную стену такой волной. (При освобождении Бреста в 1944 году по крепости били «Катюши»). Обычные бризантные боеприпасы такую температуру создать не могут.


А тех, кто пытался выяснить причину этого необычного свойства советского чудо- , наверняка поражал и такой факт: хотя масса взрывчатки у РСов была в два раза меньше, чем у их аналогов, которыми стрелял «Небельверфер», урон они наносили несравнимо больший.

Впрочем, как и почему родилась легенда о фосфорной начинке РСов – загадка не менее удивительная. Ведь сам фосфор (ни белый, ни красный, ни черный) не является взрывчатым веществом, температуру горения он не увеличивает (для этого используют порошок алюминия или других металлов). Но эту загадку пусть разгадывают специалисты по мифологии, а мы сразу перейдем к техническим данным.

Так вот, как раз в составе самой начинки не было ничего необычного. Боевая часть РСа заполнялась тетранитропентаэритритом или тринитротолуолом – эти вещества были давно известны и немцам, и во всем мире. Они были начинкой большинства типов артиллерийских снарядов и авиабомб того времени. Ракетное топливо – пироксилиновый порох, специально разработанный талантливыми советскими химиками Филипповым и Сериковым, был уникален по рецептуре, но принципиально не отличался от большинства других бездымных порохов того времени.

Более того, в разгар Зимней войны, в конце 1939 года, финны передали немцам трофейный РС-82 и те его детально исследовали. На изготовление первого аналога ушло меньше года, а знаменитые шестиствольные реактивные минометы появились даже раньше «Катюш». Кстати, порох в немецких реактивных снарядах был даже технологичнее – при его производстве было меньше брака – и, по данным испытаний, проводившихся уже после войны, траектория полета немецких реактивных снарядов была более устойчивой, чем у их русских прототипов.

Так в чем же секрет? В боевой части советских реактивных снарядов был успешно реализован интерференционный эффект сложения двух детонационных волн: на противоположных сторонах отсека одновременно срабатывали два запала, дающих два центра детонации. В результате получалась высокотемпературная ударная волна высокой мощности. Одновременный разрыв нескольких таких снарядов усиливал температурный эффект, что еще больше способствовало увеличению поражающего воздействия.

Тем не менее во Второй мировой войне белый фосфор довольно часто использовался в качестве компонента огнесмесей и – намного реже – как самостоятельный поражающий фактор зажигательного оружия.

Сначала приведем отрывок из воспоминаний летчика Олега Васильевича Лазарева (О. Лазарев «Летающий танк. 100 боевых вылетов на Ил-2»):
«…Осматривая самолет, обратил внимание, что вместо бомб к нему подвозят ящики, сколоченные из неплотно сбитых досок, в которых просматриваются большие банки из светлой белой жести. «Что это?» – спросил я у оружейника. «Фосфор. Будете выливать его на фашистов». Я знал, что с «Ила» его можно выливать, но не знал, как это делается. Пришел инженер полка, следом за ним привезли ВАПы (выливной авиационный прибор). Тут же последовал инструктаж по их использованию.

Во второй половине дня наша эскадрилья пошла на задание. Вел ее Сеничкин. В составе группы летел и я. Полет с ВАПами в полку выполнялся впервые, поэтому Хромова беспокоил взлет, особенно после случая со мной. Машины будут взлетать в перегрузочном варианте. Выливной прибор громоздкий, поэтому он ухудшает аэродинамику самолета. Увеличивается лобовое сопротивление и уменьшается скорость полета, но главное, увеличивается длина разбега, что небезопасно при ограниченной длине нашей полосы.

Чтобы как-то облегчить машину, командир решил высадить воздушных стрелков и полет выполнять одним летчиком. На случай встречи с истребителями противника он попросил увеличить количество истребителей прикрытия. Перед вылетом на земле отработали боевой порядок группы на маршруте, при подходе к цели и в момент атаки. Удар предстояло нанести по колонне техники на дороге Брянск – Рославль и в месте ее скопления у переправы через Десну. Цель была узкой, поэтому выливание фосфора решили проводить парами. Рассчитали высоту, дистанцию между парами, начало выливания, обеспечивающее наибольшую эффективность поражения объекта. Полет выполнялся без каких-либо отклонений от разработанного плана. Выглядел он эффектно и зрелищно, как в кино. При подлете к цели с автомашин, танков и зенитных установок велся сильный огонь. Стреляли даже солдаты из винтовок.
Снопы искр от рикошетировавших о броню пуль летели, как с наждачного точила. Но стоило появиться длинным шлейфам огня, лившимся на землю из самолетов Сеничкина и Ершова в виде горящих шаров размером с хоккейный мяч, за которыми тянулись белые хвосты дыма, сразу же превращавшиеся в сплошное плотное облако, как огонь с земли сразу, точно по команде, прекратился. Летчики последующих пар, шедшие за ними на удалении 300–350 метров, хорошо видели бежавших от дороги фашистов. Но, остановленные огнем, они ложились головой вниз и терялись в дыму… …Там, где стояли танки, автомашины и, конечно же, фашисты, скопившиеся у разрушенной переправы возле Жуковки, образовалось большое белое облако. Поставленную задачу эскадрилья выполнила…»

Здесь стоит, прежде всего, обратить внимание на фразу: «Но стоило появиться длинным шлейфам огня… …как огонь с земли сразу, точно по команде, прекратился». Во время штурмовки «Илами» колонн с техникой паника у немцев была, в общем-то, делом обычным, но не с первого захода. Как правило, штурмовики сначала встречал плотный огонь из всех видов оружия, подавить который удавалось далеко не всегда. В данном же случае, немцы, увидев белый шлейф, медленно опускающийся вслед за первым штурмовиком, полностью потеряли способность к сопротивлению и бросились бежать. Видимо слава белого фосфора летела впереди «Илов», не смотря на то, что дело происходит осенью 41 года, когда еще этих штурмовиков на фронте было не так уж много. (Впрочем первыми белый фосфор на немцев еще в июле стали сбрасывать ночные бомбардировщики Пе-2, но вскоре отказались от его применения из-за слишком большой опасности для самих самолетов).

В самом деле, белый фосфор – действительно страшное оружие. При горении он размягчается, тянется и устойчиво прилипает ко всем поверхностям. Потушить его практически невозможно. Раны и ожоги от него чрезвычайно опасны – при попадании на кожу практически неминуемы ожоги третьей и четвертой степени, глубокий некроз тканей, поражения костей и костного мозга. При попадании белого фосфора на бронетехнику возникает не только опасность воспламенения паров бензина – почти наверняка это означает гибель экипажа, так как продукты горения по токсичности не уступают боевым отравляющим веществам, а радиус их действия даже в безветренную погоду достигает десятков метров. Пары фосфорного ангидрида при низкой влажности могут быть устойчивы несколько часов, стелются по земле, сгущаются на поверхностях, особенно на металлических, и снова испаряются.

Отдельным поражающим эффектом является и психологический шок – по последствиям также не уступающий результатам применения отравляющих веществ. Раненые с ожогами от фосфора, особенно с ожогами легких, – настоящий кошмар военных госпиталей: их жуткие крики и стоны на фоне бессилия врачей навсегда закрепляются в памяти выздоравливающих, отправляющихся на передовую с новыми порциями слухов-страшилок…

Понятно, что эти факты и вызываемый ими страх делают фосфор во-первых идеальным артефактом любой мифологии, а во-вторых очень убедительным аргументом против более сильного и самоуверенного противника. Не случайно использование в военных целях белого фосфора начинается в девятнадцатом веке во время различных восстаний и бунтов. Так в Ирландии повстанцы применяли его против британских военных и полицейских – и получалось довольно убедительно. В Первой Мировой войне практически все воюющие стороны использовали зажигательные пули с белым фосфором, особенно, для стрельбы по воздушным целям. Известны также гранаты, снаряды и бомбы, начиненные фосфором.

Однако, несмотря на сильное впечатление, производимое на противника такими боеприпасами, уже во время Второй Мировой войны белый фосфор как самостоятельный поражающий компонент применялся очень редко, достоверных сведений о таких фактах очень мало. Область применения сузилась: широко он применялся только как инициирующий (самовоспламеняющийся) компонент различных огнесмесей в зажигательном оружии.

«…Насколько эффективным был наш вылет, мы не знали. Могли только предполагать. Но, видимо, урон врагу нанесли немалый. Иначе немецкое командование в ультимативной форме не потребовало бы прекратить применение фосфора. Они заявили, что в противном случае будут использовать химическое оружие. Не уверен в достоверности этих слухов, но вылетов с ВАПами полк больше не делал. После нашего вылета весь полк два дня простоял в полной боевой готовности со снаряженными ВАПами. На третий их сняли, фосфор от самолетов убрали, и до конца войны мы его больше не видели…»

Слухи, доходившие до передовой, были не беспочвенны: действительно, осенью 1941 года через Швейцарский Красный Крест в Москве велись переговоры о запрещении фосфорных боеприпасов. Однако применение фосфора советскими ночными бомбардировщиками и штурмовиками довольно часто упоминаются в воспоминаниях и других летчиков, воевавших на разных фронтах (в частности у Василия Емельяненко, который летал на «Иле» еще с лета 1941 года). В целом факты применения белого фосфора были хоть и не многочисленны, но довольно регулярны.

Договоренности между правительствами воюющих стран были, конечно, важным сдерживающим фактором, но не они, в конечном счете, помешали фосфорным боеприпасам стать массовым оружием Второй мировой. Одну из истинных причин невольно указал автор приведенного выше отрывка: «…выливной прибор громоздкий, поэтому он ухудшает аэродинамику самолета…». Он еще не упомянул, что применять ВАП-ы нужно было на бреющем полете, с минимальной высоты, желательно 25 метров, что очень опасно для самих штурмовиков. Кроме того, при попадании даже небольших количеств фосфора на обшивку самолет в самом лучшем случае ожидал капитальный ремонт. Доставка компонентов фосфорного оружия в прифронтовых условиях тоже требовала специальных мер, обеспечение которых обходилось слишком дорого.

Несмотря на этот довольно ограниченные масштабы применения фосфора советскими штурмовиками в начальный период войны, эти факты породили множество ярких легенд и фантастических историй в народной и сетевой мифологии. Большая часть из них основана на элементарной терминологической путанице. Например, почти повсеместно такими авторами упоминаются, сбрасываемые «Илами» жестяные ампулы АЖ-2 с якобы «фосфорной» самовоспламеняющейся смесью КС.

Это очень типичный пример устойчивого заблуждения, бороться с которым, в общем-то, бесполезно, но попробуем еще раз.

Болванка современного американского подкалиберного бронебойного снаряда выполнена обычно из уранового сплава, но ведь из этого не следует, что американцы применяли ядерное оружие в Ираке или в Югославии.

Точно также и фосфор, растворенный в углеводородах, или находящийся в запальной ампуле зажигательного боеприпаса, является инициирующим элементом, а не поражающим. Он действительно широко использовался в различном зажигательном оружии и в составе огнесмесей, но добавлялся исключительно для самовозгорания при контакте с воздухом. Его количества было недостаточно для создания особого поражающего эффекта. Более того, присутствие фосфора даже в небольшом количестве в составе огнесмеси, конечно, делает ее продукты горения более ядовитыми и опасными, но физические качества самой смеси ухудшаются. В качестве самовоспламеняющегося на воздухе компонента огнесмесей более эффективным и удобным (особенно в зимнее время) оказался сероуглерод. Тоже, кстати, очень ядовитое и опасное соединение – и именно его чаще всего использовали в рецептах многих КС и «коктейлей Молотова».
Поэтому, встречая в источниках название «фосфор» или «фосфорная смесь», нужно относиться к ним очень осторожно – в 90 % случаев его можно заменить на «фосфорсодержащая смесь».

Еще в большей мере это касается немцев. У них большинство зажигательных смесей (включая применявшиеся в ранцевых огнеметах) были фосфорсодержащими. Отсюда многочисленные свидетельства того, как они буквально «заливали фосфором» советские окопы, укрепления и бронетехнику.

Гранулированный белый фосфор немцы, впрочем, тоже пробовали применять (правда, позднее – в середине 42 года), но видимо, неуспешно, так как свидетельства единичны и недостоверны. Скорее всего, для эскадрилий немецких пикировщиков применение фосфорных зажигательных бомб было просто слишком неудобно. «Штуки» на Восточном фронте постоянно работали в режиме «пожарной команды», делая в хорошую погоду по нескольку вылетов в день. Они гораздо чаще, чем советские штурмовики, меняли аэродромы. Снабжение боеприпасами и технические службы работали практически круглосуточно в экстремальном режиме. А бомбу-контейнер с белым фосфором нужно везти отдельным транспортом, ее установка требует долгой и квалифицированной работы специальной команды техников. Те задачи, которые «Юнкерсы» решали на поле боя, просто не могли ждать, и для них вполне достаточно было обычных боеприпасов.

Для бомбардировки же укреплений, гражданских зданий и промышленных объектов немцами эффективно применялись термитные бомбы (жители советских городов называли их «зажигалки»).

В то же время в немецких мемуарах и исторических исследованиях очень часто встречаются свидетельства об использовании фосфора авиацией союзников, главным образом, против гражданского населения.

Так что в целом можно сказать, что для применения белого фосфора не были разработаны и подготовлены в достаточной мере специальные боеприпасы, техника, средства хранения и транспортировки. А еще сказывался дефицит специально обученных людей, особенно техников-оружейников. Во многом аналогичная картина была и во время Первой Мировой – несмотря на то, что тогда еще не было и в помине никаких международных договоренностей и конвенций, фосфор все же применялся довольно ограниченно. К счастью, к началу Второй Мировой войны ни одна из сторон тоже не была готова технически и организационно к его массовому использованию. Большая часть специальных зажигательных средств и боеприпасов либо создавалась в экстренном порядке перед самой войной, либо уже после ее начала. В большинстве своем они носили экспериментальный характер, были несовершенны и слишком опасны в использовании. По мере совершенствования зажигательного оружия (в том числе, ампул для смесей «КС») и появления более удобных и надежных в использовании компонентов (как сероуглерод) белый фосфор довольно быстро терял свою актуальность.

Понравилась статья? Поделитесь ей