Контакты

Применение гамма излучение в медицине. Чем опасно гамма-излучение и способы защиты от него

Мало кто из нас знает о таком явлении, как гамма-излучение, так как не все мы обладаем специальными познаниями в области физики.

Итак, гамма-излучение представляет собой одну из многочисленных разновидностей электромагнитного излучения. в данном случае очень невелика, как и ее волновые свойства. История открытия данного излучения началась больше ста лет назад. В 1900 году это явление было открыто одним из французских физиков - Полем Виллардом. А произошло это открытие совершенно случайно в результате исследования радия.

Гамма-лучи по-своему уникальны и имеют ряд уникальных свойств. Основные процессы возникают при проникновении данного излучения через определенные виды веществ. Фотоэффект таких лучей основывается на возникновении электронов в веществе при воздействии на него света. Фотоэффект в данном случае может быть как внешним, так и внутренним.

Комптон-эффект - еще одно свойство гамма-излучения, которое также заслуживает особого изучения. В данном случае отмечается увеличение электромагнитной волны. Это явление было открыто в далеком 1923 году.

Образование пар - очередное уникальное свойство гамма-лучей. В результате определенной реакции, квант, расположенный в самом центре ядра, становится и электроном, и позитроном. А вот благодаря ядерному эффекту такого излучения гамма-квант способен выбивать из ядра нуклоны. Гамма-излучение в современном мире применяется в самых разных областях жизни человечества. Гамма-дефектоскопия, например, позволяет контролировать работу многих аппаратов и изделий при помощи специальных лучей. Консервирование многих продуктов также происходит с использованием подобных лучей. При этом срок годности заготовок значительно увеличивается, а о каких-либо вредных последствиях и вовсе не может быть и речи.

С использованием гамма-излучения проводятся процессы стерилизации оборудования, медицинских инструментов, некоторых продуктов питания. В медицине такие лучи также нашли область своего применения. При помощи например, лечится огромное количество разновидностей злокачественных опухолей. Согласитесь, это немаловажный вклад в развитии медицины, так как это удается далеко не каждому лекарственному препарату. При использовании гамма-лучей мы наблюдаем достаточно неплохие результаты в лечении онкологических заболеваний и к тому же при относительно небольших затратах. Да и вообще, гамма-лучи благодаря своим специфическим свойствам смогли существенно продвинуть медицину вперед.

Гамма-каротаж является неотъемлемой частью геологии. Используя различные источники гамма-излучения, геологи измеряют глубину скважин. А вот гамма-высотомер - это способ точно определить расстояние, преодолеваемое То есть данные излучения нашли активное применение и в космонавтике, и в геологии, и в медицине, и на производстве. Но при всех этих положительных моментах гамма-излучение имеет и некоторые недостатки, о которых необходимо обязательно знать. Из-за продолжительного контакта с квантами, например, возникает опасное заболевание - лучевая болезнь. Самым серьезным последствием такого облучения являются различные виды онкологических болезней.

Кроме того, данные лучи обладают еще и тератогенным воздействием на организм, в результате которого происходят мутация и эмбриональное нарушение нормального развития. По сути, гамма-излучение - это та же самая радиация, о которой мы много слышали, но о которой мало знаем. Хотя при правильном использовании в небольших дозах с использованием современного оборудования данные излучения способны существенно облегчить и улучшить жизнедеятельность человека!

При создании этого раздела в основном были использованы материалы монографий и обзора .

Изотопные источники гамма-квантов

Обычно в качестве радиоактивных источников гамма-квантов используются бета-активные изотопы. На рис. 1 в качестве примера показаны схемы распада 60 Co и 22 Na. Ядро 60 Co в основном распадается на возбужденное состояние 4 + дочернего ядра 60 Ni посредством разрешенного гамов-теллеровского перехода. Это возбужденное состояние переходит в основное посредством каскада E2-переходов с энергиями гамма-квантов 1173 и 1333 кэВ. Ядро 22 Na испытывает β + -распад. Также, как и в случае 60 Co, распад происходит в основном на возбужденное состояние дочернего ядра. 22 Na является источником γ -квантов с энергией 1275 и 511 кэВ. Последние образуются в результате аннигиляции позитронов.
Кроме бета-активных изотопов в качестве источников гамма-квантов используются также изомеры , например 119m Sn. Период полураспада измерного состояния 119m Sn T 1/2 = 293.1 дня, энергия 23.9 кэВ. Кроме гамма-линии от распада изомерного состояния 119m Sn является источником рентгеновских квантов с энергиями 25.2 и 28.6 кэВ, которые сопровождают процесс внутренней конверсии , конкурирующим с гамма-переходом.
Собственные ширины γ -линий на много порядков меньше энергий γ -квантов, поэтому радиоактивные источники можно считать монохроматическими. Интенсивность радиоактивных источников может быть доведена до 10 14 фотонов в секунду.
В табл. 1 показаны бета-активные изотопы, которые используются в образцовых спектрометрических источниках (ОСГИ), применяемых в качестве рабочих эталонов для поверки и градуировки средств измерений фотонного излучения.

E γ , кэВ
22 Na 2.6027 лет 1274.54 109 Cd 461.4 дней 88.0 152 Eu 13.51 лет 121.78
- 1408.0
44 Ti 60.0 лет 68.9
78.3
1157.0
113 Sn 115.1 дней 255.1
391.7
153 Gd 240.4 дней 97.4
103.2
54 Mn 312.2 дней 834.8 134 Cs 2.065 лет 563.2
569.3
604.7
795.8
207 Bi 32.9 лет 569.7
1063.6
55 Fe 2.741 лет 5.9
6.5
228 Th +
дочерние
1.911 лет 84.4
- 2614.5
57 Co 271.8 дней 14.4
122.1
136.5
133 Ba 10.54 лет 81.0
276.4
302.9
356.0
383.85
241 Am 432.6 лет 26.3
56.5
60 Co 5.271 лет 1173.2
1332.5
243 Am 7370 лет 43.5
74.7
65 Zn 244.06 дней 1115.54 137 Cs 30.018 лет 661.7
88 Y 106.6 дней 898.0
1836.1
139 Ce 137.64 дней 165.9

Гамма-кванты из ядерных реакций

Монохроматические γ-кванты более высокой энергии можно получить, используя ядерные реакции, которые приводят к сильному возбуждению конечного ядра. Если ядро сильно возбуждено, то вероятность его распада Г определяется соотношением

Г = Г x + Г γ ,

где Г x - вероятность испускания ядром нуклонов и более сложных частиц, а Г γ - вероятность излучения γ-кванта.
Если энергия возбуждения ядра меньше энергии связи нуклона, то Г x = 0 и Г = Г γ . Вероятность излучения γ-кванта Г γ также велика при возбуждениях ядер, вызванных захватом медленных нейтронов. В этом случае Г= Г n + Г γ , где Г n - вероятность обратного испускания нейтрона, причем для многих ядер Г γ > Г n . Испускание γ-квантов при захвате медленных нейтронов называется радиационным захватом или реакцией (n,γ).
При радиационном захвате медленных нейтронов обычно образуются γ-кванты с энергиями от 4 до 11 МэВ (энергии связи нейтронов в различных ядрах). Энергетический спектр γ-квантов такого источника содержит одну или несколько линий.
Создание достаточно интенсивных источников γ-квантов путем радиационного захвата нейтронов предполагает использование мощных ядерных реакторов. Современные ядерные реакторы позволяют получать интенсивности γ-квантов радиационного захвата до 10 8 квант/с.
Неизбежным недостатком γ-источников такого типа является большой нейтронный фон.
Если энергия возбуждения ядра значительно превышает энергию связи нуклона, то, как правило, возбуждение будет сниматься испусканием протонов, нейтронов или более сложных частиц. Однако и здесь возможны особые случаи, когда Г x 0 и Г Г γ .
Рассмотрим в качестве примера состояние 1 + в ядре 8 Ве, имеющее энергию возбуждения 17.64 МэВ. Оно лежит ниже порога испускания нейтрона (18.9 МэВ), а обычный распад ядра 8 Ве, идущий по схеме 8 Ве→ 2α, запрещен, поскольку система двух α-частиц может находиться лишь в состояниях 0 + , 2 + , 4 + и т. д. Поэтому указанное выше состояние в 8 Ве распадается с излучением γ-кванта. Спектр γ-квантов содержит две линии: при переходе в основное состояние 0 + испускаются γ-кванты с энергией 17.64 МэВ (узкая линия), при переходе на первое возбужденное состояние 2 + - γ-кванты с энергией 14.74 МэВ (широкая линия), При этом интенсивность первой линии примерно в два раза превосходит интенсивность второй.
Для возбуждения состояния ядра 8 Ве с энергией 17.64 МэВ используется захват ядром 7 Li протонов с Е р = 440кэВ:

За счет уменьшения толщины литиевой мишени энергетическая ширина γ 0 -линии (17.64 МэВ) может быть доведена примерно до 12 кэВ.
Варьируя энергию протонов Е р, можно плавно менять энергию γ-квантов поскольку эти величины связаны соотношением

E(γ 0) = (17.25+ 7/8Е р) МэВ,
Е(γ 1) = (14.35 + 7/8Е р) МэВ.

Однако возможности изменения энергии сильно ограничены, так как увеличение энергии протонов приводит к быстрому уменьшению интенсивности γ-излучения. Так, уже при Е р = 800-900 кэВ интенсивность γ-квантов уменьшается примерно в 20 раз. Кроме того, начинает доминировать γ-линия с меньшей энергией.
Другой часто используемой реакцией является реакция 19 F(p,αγ) 16 О, в которой генерируются три γ-линии с энергиями 6.14, 6.92 и 7.12 МэВ, возникающие при распаде возбужденных состояний ядра 16 О. Их относительные интенсивности можно менять, варьируя энергии протонов. Так, при Е р = 2.05 МэВ 80% γ-квантов испускается с энергией 7.12 МэВ. Энергетическая ширина γ-линии 130 кэВ.
Реакция радиационного захвата протонов легкими ядрами наиболее удобна для создания γ-источников подобного типа. Одна из причин этого в том, что энергии связи протонов в легких ядрах велики, что позволяет получать монохроматические γ-кванты довольно больших энергий. Так, в реакции 3 Н(р,γ) 4 Не (энергия связи протона в 4 Не - 19.81 МэВ) можно получить γ-кванты с энергией более 20 МэВ. Энергетическая ширина γ-пучка в этой реакции может быть доведена до 40 кэВ. Плавное увеличение энергии протонов приводит и к плавному увеличению энергии γ-квантов. Верхняя граница энергии протонного пучка определяется выходом нейтронов в конкурирующей реакции 3 Н(р,n), начинающейся при Е р = 1.02 МэВ.
Получение удобного для экспериментов пучка монохроматических γ-квантов с энергиями существенно большими 20 МэВ в реакции (p,γ), так же как и в других ядерных реакциях, невозможно. Это связано с тем, что даже легкие ядра, захватывая протоны с Е р >1МэВ, оказываются в области энергий возбуждения, где уровни составного ядра начинают перекрываться. Кроме того, при возрастании энергии возбуждения увеличивается доля, каскадных γ-переходов. Все это приводит к сильному усложнению спектра γ-квантов и неизбежной конкуренции распадов с вылетом нуклонов и других частиц. Недостаток источников этого типа заключается также в сравнительно невысокой интенсивности γ -квантов.
Диапазон плавного изменения энергии γ-квантов у источников рассматриваемого типа сильно ограничен.

Тормозное излучение от электронных ускорителей

Двигаясь с ускорением, быстрые электроны испускают электромагнитное излучение, называемое тормозным. Для получения тормозного γ -излучения достаточно поток электронов направить на любую мишень. В этом случае тормозное излучение возникает за счет ускоренного движения электронов в кулоновском поле ядер и атомарных электронов мишени.
Энергетический спектр γ-квантов тормозного излучения непрерывен и имеет верхнюю границу Т. Если полная энергия электронов до взаимодействия с мишенью равна Е 0 , то

Т = Е 0 - mc 2 , (1)

где mc 2 - энергия покоя электрона (0.511 МэВ). Исключая область вблизи верхней границы, энергетический спектр тормозного излучения подчиняется простой зависимости l/E γ , где E γ - энергия испущенного γ-кванта.
Угловое распределение тормозного излучения обладает азимутальной симметрией. Оно определяется лишь величиной угла θ между направлениями движения фотонов и первичных электронов и характеризуется резким максимумом в направлении движения электронного пучка до взаимодействия с мишенью (т. е. при θ = 0°). Наибольшая доля радиации заключена в пределах малого для релятивистских электронов угла θ 0 < mc 2 /E 0 . Отсюда следует, что по мере увеличения энергии электронов тормозное излучение сосредоточивается во все более малом телесном угле.

Поскольку сечение тормозного излучения быстро растет с увеличением атомного номера мишени, то последняя обычно изготовляется из вещества с большим Z (платина, вольфрам и др.). На рис. 2 в качестве примера приведены спектры тормозного излучения при различных Е 0 , рассчитанные для платиновой мишени.

Любой ускоритель электронов может быть использован как источник тормозного излучения. Такие источники обеспечивают наиболее интенсивные потоки высокоэнергичных γ -квантов. При токе электронного пучка в 100 МкА и тормозной мишени толщиной в 0.01 радиационную длину интенсивность фотонов независимо от энергии падающих электронов приблизительно равна 6 . 10 12 / E γ фотонов на МэВ.

Методы монохроматизации гамма-излучения высокой энергии

Аннигиляция на лету быстрых позитронов

Суть метода состоит в использовании процесса аннигиляции на лету позитронов, движущихся с релятивистскими скоростями.
Быстрый позитрон с энергией E pos , двигаясь в веществе, может испытать аннигиляцию, не успев потерять сколько-нибудь значи­тельную часть своей первоначальной энергии. При аннигиляции позитрона могут образовываться два и более фотонов. Наиболее вероятный процесс - двухфотонная аннигиляция. Именно этот процесс и приводит к образованию монохроматических фотонов. Образование большего числа фотонов, например трех, приводит к непрерывному энергетическому распределению. Однако в связи с тем, что сечение трехфотонной аннигиляции мало, ею можно пренебречь (трехфотонная аннигиляция происходит в 370 раз реже, чем двухфотонная).
При двухфотонной аннигиляции, которую и будем рассматривать в дальнейшем, образуется два γ-кванта с энергиями

(2)
E γ2 = E pos - E γ1 + mc 2 , (3)

где θ - угол между направлением испускания первого фотона и направлением движения позитрона.
Наиболее вероятно испускание двух фотонов в противоположных направлениях под углами, близкими к 0 и 180° относительно направления движения позитрона. При этом фотон, испускаемый под углом 0°, т. е. в переднем направлении, уносит практически всю энергию. Действительно, полагая θ = 0 и mc 2 << E pos , из (2 и 3) получаем

Зависимость энергии аннигиляционных γ-квантов от угла θ (см. формулу (2) и рис. 3) приводит к тому, что спектр фотонов в конечном телесном угле не является строго монохроматичным. При увеличении энергии позитрона энергетический разброс уменьшается. Если пренебречь многократным рассеянием позитронов в веществе мишени, где происходит аннигиляция, то угол, в котором энергетический разброс не превышает величины

δ = ΔE γ1 /E γ1 ,

согласно оценкам равен (2E pos) 1/2 . Поэтому, выделяя аннигиляционные фотоны, летящие в пределах достаточно малого телесного угла, можно достичь весьма высокой степени монохроматизации γ-излучения. Быстрые позитроны, необходимые для создания аннигиляционногоизлучения, получают,направляя релятивистские электроны с полной энергией E el на мишень (конвертор) с высоким Z (тяжелые ядра). Тормозное излучение, генерируемое в мишени, образует в этой же мишени электронно-позитронные пары. Позитроны выходят из конвертора в широком телесном угле и имеют полные энергии в интервале от 0 до E el - 2mс 2 . Располагающийся после конвертора магнитный анализатор выделяет позитроны, энергии которых заключены в узком интервале. Эти позитроны либо сразу, либо после дополнительного ускорения направляются на аннигиляционную мишень с малым Z (легкие ядра). Образующиеся в этой мишени аннигиляционные γ-кванты и используются далее для проведения эксперимента.
Поскольку процесс образования аннигиляционных фотонов является двухступенчатым, то выход монохроматического излучения очень мал. Обычно вероятность рождения электроном позитрона в конверторе не превышает 10 -4 - 10 -3 , а выход аннигиляционных фотонов на один позитрон приблизительно равен 10 -4 . Таким образом, выход аннигиляционных фотонов на один электрон составляет величину не более 10 -8 - 10 -7 . Очевидно поэтому, что создание интенсивных потоков аннигиляционного γ-излучения возможно лишь при наличии сильноточных электронных ускорителей.

Рассмотрим в качестве примера монохроматор (рис. 4), работавший в Ливерморе (Калифорнийский университет, США) .

Электроны с энергией 150 кэВ инжектировались в первую секцию линейного ускорителя. В конце секции перед попаданием на конвертор они имели энергию около 10 МэВ. Конвертор, изготовленный из тантала (Z = 73) или вольфрама (Z = 74), имел толщину около 2.5 мм. Позитроны, образующиеся в конверторе, фокусировались магнитной линзой и ускорялись двумя следующими секциями линейного ускорителя примерно до 30 МэВ. Перестройка секций ускорителя с режима ускорения электронов на режим ускорения позитронов и наоборот осуществлялась поворотом фазы высокочастотного электрического напряжения. Полный выход позитронов на один электрон был равен 10 -5 . С учетом того что магнитный анализатор отбирал для дальнейшего ускорения позитроны с разбросом по энергии не более 1%, выход позитронов на один электрон составлял величину около 10 -7 .
Необходимо отметить, что энергия позитронов, вводившихся во вторую секцию линейного ускорителя, была примерно в три раза меньше энергии электронов, попадавших на конвертор. Это было связано с тем, что энергетическое распределение позитронов, выходящих из конвертора, имеет максимум при энергии, соответствующей примерно одной трети энергии электронов. В качестве аннигиляционной мишени использовался образец из LiH толщиной 0.15 мм. Выход аннигиляционных фотонов на один позитрон для такой мишени был равен ~10 -11 .
Как уже упоминалось, конверторы изготовляют из материалов с высоким Z, в связи с тем что выход позитронов зависит от вероятности двух последовательных процессов: образования тормозного γ-излучения и рождения электронно-позитронных пар, причем сечение каждого из этих процессов растет, как Z 2 .
Выбор в качестве материала для аннигиляционной мишени веществ с малым Z объясняется необходимостью максимального подавления относительного вклада тормозного γ-излучения позитронов, которое неизбежно сопровождает аннигиляционное γ-излучение. Поскольку выход аннигиляционных γ-квантов порционален Z, то для легких ядер соотношение между числом аннигиляционных и тормозных γ-квантов будет максимальным.

Таким образом, спектр γ-квантов, возникающих при попадании на аннигиляционную мишень быстрых позитронов, не является строго монохроматическим, так как содержит тормозное излучение. Энергетические спектры γ-квантов, рассчитанные для случая бериллиевой мишени, приведены на рис. 5. При этом полагалось dE γ , равным 1 МэВ, а форма аннигиляционного пика считалась гауссовой и соответствовала энергетическому разрешению 5%. Видно, что с увеличением E pos соотношение между числом аннигиляционных и тормозных γ-квантов ухудшается. Действительно, число аннигиляционных γ-квантов растет, как E pos , а число тормозных γ-квантов в низкокоэнергетичной части спектра растет примерно как E 2 pos .
Неизбежное присутствие тормозного γ -излучения является недостатком описываемого метода монохроматизации, так как приводит к необходимости получения конечного результата в виде разности двух измерений. Вначале измеряют выход Y pos (E pos) реакции с пучком фотонов, генерируемых аннигиляционной мишенью при попадании на нее позитронов энергии E pos , а затем - выход реакции Y el (E el) с пучком фотонов, возникающих в аннигиляционной мишени при попадании на нее такого же числа позитронов или электронов той же энергии. В последнем случае спектр фотонов чисто тормозной и разность Y pos (E pos) - Y el (E el) есть выход исследуемой реакции, отвечающий пику аннигиляционного излучения.
Однако извлечение корректной информации о сечениях реакций на основании экспериментальных данных о выходах представляет из себя нетривиальную задачу и требует хорошего знания параметров аппаратной функции .
Сравнительно невысокая интенсивность аннигиляционных пучков ограничивает их эффективное использование одним типом экспериментов - измерением эффективных сечений фотонейтронных реакций. Недостаточно высокая интенсивность аннигиляционного излучения в таких экспериментах может быть компенсирована большим (до нескольких сот граммов) весом исследуемой мишени.

Меченые фотоны

В этом методе исследуемой мишени облучается пучком тормозного излучения, и для каждого случая фотоядерной реакции определяется энергия фотона, который эту реакцию вызвал. Осуществляется это следующим образом (см. рис. 6). Пучок электронов выводится из ускорителя и направляется на тормозную мишень, расположенную вне ускорительной камеры. Электрон с энергией E 0 , взаимодействуя с тормозной мишенью, испускает фотон с энергией E γ и выходит из нее с меньшей энергией Е. Фотон попадает далее на исследуемую мишень и вызывает фотоядерную реакцию. Поскольку E 0 , Е и E γ однозначно связаны соотношением

E γ = E 0 - Е,

то, измерив энергию Е рассеянного электрона и зарегистрировав его на совпадение с продуктами фотоядерной реакции, можно найти энергию E γ фотона, который эту реакцию вызвал (E 0 известна, так как определяется режимом работы ускорителя). Энергию рассеянного электрона Е обычно определяют с помощью магнитного спектрометра.
Энергию E γ можно варьировать, меняя энергии E 0 и Е.
Энергетическое разрешение метода меченых фотонов определяется главным образом разрешением магнитного спектрометра и в принципе может быть выше энергетического разрешения метода аннигиляции на лету быстрых позитронов. Метод меченых фотонов был впервые реализован на синхротроне Корнельского университета (США). Монохроматор, использующий метод меченых фотонов, был создан также в 1961 г. в Иллинойском университете (США) . Его энергетическое разрешение равно 0.67% для фотонов с энергией 11-19 МэВ. Максимальная интенсивность пучка фотонов составила величину 5 . 10 5 фотонов в секунду. Вторичные электроны детектировались шестью пластиковыми сцинтилляторами, расположенными в фокальной плоскости магнитного спектрометра. Одновременно фиксировалась энергия электронов Е и время их регистрации. Энергия нейтронов из реакций (γ,xn) определялась методом времени пролета .
К недостаткам метода меченых фотонов следует отнести необходимость непосредственной регистрации продуктов ядерной реакции, что не позволяет использовать ряд методов регистрации, например, метод наведенной активности. Один из наиболее перспективных путей повышения интенсивности пучка меченых фотонов - использование линейных ускорителей со стопроцентным рабочим циклом. Однако, даже на таких ускорителях удается использовать лишь часть интенсивности электронных пучков (см. табл. 2). Основное ограничение на интенсивность накладывает быстродействие системы регистрации. (Характерное разрешающее время в системах меченных фотонов составляет ~1 нс.)

Ускоритель E e , МэВ J e , мкА k,% E γ , МэВ ε J, мкА I, с -1
Микротрон, Майнц 180 60 100 80-174 60-65 - 5 . 10 7
Микротрон, Иллинойс 67 13 100 6-30 0.1 ~10 7
Линейный ускоритель, Сендай 600 0.5 80 120-530 0.1 3 . 10 6

Здесь E e - энергия электронов, J e - ток электронов, k - коэффициент заполнения пучка, E γ - энергия гамма-квантов, - эффективность системы мечения, J - используемый ток электронов при работе в режиме мечения фотонов, I - поток меченных фотонов в диапазоне ΔE γ /E γ 1%.

Комптон-эффект на покоящемся электроне

Для создания источника монохроматических фотонов регулируемой энергии можно использовать комптон-эффект на покоящемся и движущемся электроне (так называемый прямой и обратный комптон-эффект). В первом случае пучок монохроматических -квантов, образующихся в какой-либо ядерной реакции, испытывает рассеяние на электронах неподвижной мишени. Во втором - фотонный пучок мощного лазера пучок рассеивается на встречном пучке высокоэнергичных монохроматических электронов.
Использование прямого комптон-эффекта позволяет устранить один из наиболее существенных недостатков пучков γ -квантов, образующихся в ядерных реакциях - невозможность плавной регулировки энергии фотонов. Действительно, энергия E γ0 падающего фотона связана с энергией E γ фотона после комптоновского рассеяния следующим соотношением:

Если рассеиватель занимает участок сферической поверхности, на которой расположены источник монохроматических фотонов фиксированной энергии и исследуемая мишень, то энергия всех фотонов, попадающих на исследуемую мишень, будет одной и той же (рис. 7). Эту энергию можно менять, перемещая либо мишень, либо γ -источник вдоль поверхности сферы.

В первых экспериментах с монохроматором такого типа использовались γ -кванты радиационного захвата тепловых нейтронов пластинкой кадмия (рассеиватель - графит). Интенсивность рассеянных -квантов была такой, что на расстоянии 10 м от источника на площадку в 1 см 2 падал 1 фотон в секунду в интервале энергий 1 эВ. Энергия γ -квантов могла плавно меняться в интервале от 0.1 до 8.0 МэВ.
В другой установке этого типа использовались γ -кванты радиационного захвата нейтронов в Ti и Ni. Рассеиватель изготовлялся из алюминия. Энергия рассеянных γ-квантов менялась от 0.5 до 8.5 МэВ. Энергетическое разрешение было равно 1-3%, а интенсивность фотонов 1 квант/эВ. с. см 2 .
Недостаток этого метода в том, что энергия рассеянных фотонов ограничена сверху и без того не слишком высокой энергией γ-квантов радиационного захвата. Наиболее целесообразно использование γ-квантов радиационного захвата медленных нейтронов, интенсивность которых может быть очень высокой).

Обратное комптоновское рассеяние лазерных фотонов на электронах

Монохроматические γ -кванты более высокой энергии можно получить, используя обратный комптон-эффект .
Комптон-эффект на движущемся электроне обладает важной особенностью - в процессе рассеяния возникают фотоны значительно более жесткие, чем рассеиваемые. Так при рассеянии световых фотонов на релятивистских электронах рассеянные фотоны имеют энергию, сравнимую с энергией первичных электронов. Действительно, обобщая выражение (6) для случая, когда электроны движутся со скоростью v, можно получить

(7)

где Е 0 - полная энергия электрона до взаимодействия, а смысл углов θ и φ поясняется рис. 8.
Таким образом, при фиксированных значениях Е 0 и E γ 0 энергия рассеянного фотона полностью определяется геометрией эксперимента (углами и ).
Поскольку мы рассматриваем случай рассеяния фотонов не слишком высокой энергии на ультрарелятивистских электронах, то Е 0 >> Е γ0 и третьим слагаемым в знаменателе выражения (7) можно пренебречь. В этом приближении

Из соотношения видно, что даже в случае использования источника фотонов малой энергии энергия рассеянных фотонов может быть сколь угодно большой за счет повышения энергии электронов. Это открывает возможность получения интенсивного пучка монохроматических γ-квантов высокой энергии за счет использования мощных лазеров. Действительно, при рассеянии фотонов рубинового лазера (Е γ0 = 1.78 эВ) на электроне с энергией 6 ГэВ E γ max = 848 МэВ.
Энергию рассеянных фотонов можно варьировать либо изменением энергий Е 0 и Е γ0 , либо изменением угла наблюдения - φ. С увеличением Е 0 и Е γmax растет очень быстро. При Е γ0 = 1.78 эВ:

Е 0 1 ГэВ 6 ГэВ 40 ГэВ 500 ГэВ
Е γmax 28 МэВ 848 МэВ 20 ГэВ 497 ГэВ

Энергетическое разрешение пучка рассеянных фотонов зависит от степени их коллимации, т. е. разброса в угле θ - φ. Рассмотрим случай, когда фотон после рассеяния назад летит под малым углом относительно направления движения первичного пучка электронов (θ = 180° и θ - φ0°). Из соотношения (8) с учетом того, что vc, получаем

(максимальная энергия рассеянного фотона дается формулой (9)). Отсюда следует, что для оценки энергетического разрешения пучка рассеянных назад фотонов можно использовать выражение

(12)

Полагая = 10 -5 рад, Е γ0 = 1.78 эВ и Е 0 = 8 ГэВ, получаем Е γmax = 1.44 ГэВ и энергетическое разрешение около 2%. С ростом Е 0 энергетическое разрешение при том же угле коллимации ухудшается. Так, при Е 0 = 16 ГэВ (Е γmax = 4.7 ГэВ) оно равно 6.5%.
Интенсивность пучка монохроматических фотонов, получаемых с помощью обратного комптон-эффекта, определяется как интенсивностью лазерного излучения, так и интенсивностью электронного пучка. Число фотонов, излучаемое мощными лазерами, достигает 10 20 в импульсе при длительности импульса 10 -8 с. Рассеяние такого числа фотонов на электронном сгустке такой же длительности с числом электронов 10 11 позволит получить интенсивность монохроматических фотонов до 10 7 фотон/с при энергетическом разрешении около 5%.
Для получения комптоновских пучков целесообразно использовать электронные накопители с током в несколько сотен миллиампер.
Метод обратного рассеяния был предложен в 1963 г. Первая установка, на которой начались ядернофизические исследования была создана во Фраскати (Ladone). С 1994 г. в Новосибирске ведутся исследования на установках РОКК (Р ассеянные О братные К омптоновские К ванты). В настоящее время на комптоновсих пучках ведутся работы также в Брукхейвене на установке LEGS (L aser E lectron G amma S ource), в Гренобле - GRAAL (GR enoble A ccelerateur A nneau L aser), в Японии - LEPS (L aser E lectron P hoton S ource). В табл. 4 приведены основные параметры установок с пучками обратных комптоновских фотонов.

Установка Ladone Taladone РОКК LEGS GRAAL LEPS
1 2
Накопитель Adone
(Фаскати)
ВЭПП-4,3,4М
(Новосибирск)
NSLS
(Брукхейвен)
ESRF
(Гренобль)
SPring-8
(Осака)
Энергия электронов, ГэВ 1.5 1.5 1.8-5.5 0.35-2.0 1.4-5.3 2.5 6.04 8.0
Ток электронов, А 0.1 0.1 0.2 0.1 0.2 0.2 0.1 0.2
Энергия лазерных фотонов, эВ 2.45 2.45 2.34-2.41 2.41-2.53 1.17-3.51 3.53 3.53 3.5
Энергия комптоновских квантов, МэВ 5-80 35-80 100-960 140-220 100-1200 180-320 550-1470 150-2400
Разрешение по энергии (FWHM), МэВ 0.07-8 4-2 1.5-2 4 6 16 30
Интенсивность гамма-квантов, с -1 10 5 5 . 10 5 2 . 10 5 2 . 10 6 2 . 10 6 4 . 10 5 2 . 10 6 10 7

Видно, что в этих установках перекрывается широкий диапазон энергий. Интенсивность пучка не превышает 10 7 с -1 . Ограничение по интенсивности связано с выбиванием лазерным пучком электронов с орбиты накопителя. Повышения интенсивности можно достичь, используя длинноволновые лазеры, когда потери энергии электронов на излучение гамма-квантов сравнительно невелики и электроны не теряются в накопителе, а возвращаются на равновесную орбиту.
Для получения высокой монохроматичности пучка небольших энергий (Е γ < 100 МэВ) используется коллимация пучка. Однако с увеличением энергии требуемый диаметр коллиматора становится слишком малы, поэтому дополнительно применяется система меченных фотонов.
Для примера на рис. 9 показана схема установки РОКК-2.

Преимущества метода обратного комптоновского рассеяния заключаются в том, что

  • при довольно высокой интенсивности удается получить хорошую монохроматичность;
  • фон тормозных низкоэнергетических фотонов, который в данном случае возникает только на остаточном газе вакуумной системы накопителя очень мал;
  • можно плавно менять верхнюю границу комптоновского спектра, изменяя начальную энергию электронов;
  • интенсивность пучка гамма-квантов слабо зависит от энергии электронов;
  • можно получать гамма-кванты с линейной или циркулярной поляризацией, степень которой близка к 100%, поляризацией пучка легко управлять, изменяя поляризацию лазерных фотонов.

Квазимонохроматическое излучение фотонов из ориентированных монокристаллов

Спектр когерентного излучения из ориентированного кристалла, облучаемого электронами, кроме тормозной компоненты, один из которых (при меньшей энергии) имеет максимальную интенсивность. Метод был реализован во Фраскатти и Харькове. Обычно используются тонкие (~0.5-2 мм) монокристаллы алмаза. Настройка по энергии осуществляется вращением кристалла относительно направления падающего пучка. Во Фраскати при энергии электронов 1 ГэВ диапазон энергий гамма-квантов составлял 100-550 МэВ. Как во Фраскати, так и в Харькове были получены интенсивности ~10 10 c -1 при степени монохроматичности 10%.

Литература

  1. Б.С. Ишханов, И.М. Капитонов. Взаимодействие электромагнитного излучения с атомными ядрами. Изд. МГУ, 1979.
  2. В книге В.Г. Недорезов, А.Н. Мушкаренков. Электромагнитные взаимодействия ядер главы и .
  3. В.Г. Недорезов, Ю.Н. Ранюк. Фотоделение ядер за гигантским резонансом. Киев, Наукова думка (1989).

ГАММА-ИЗЛУЧЕНИЕ (γ-излучение), коротковолновое электромагнитное излучение (длина волны λ≤10 -10 м, короче, чем у рентгеновского излучения). При столь малых λ волновые свойства гамма-излучения проявляются слабо, первостепенное значение имеют корпускулярные свойства. Гамма-излучение представляет собой поток частиц - гамма-квантов, которые, как и другие фотоны, характеризуются энергией Е = hv (h - постоянная Планка, v - частота электромагнитных колебаний). Гамма-излучение открыто в начале 20 века как компонента излучения радиоактивных ядер, которая не отклонялась при прохождении через магнитное поле, в отличие от α- и ß-излучений. В 1914 году Э. Резерфорд совместно с английским физиком Э. Андраде в опытах по дифракции гамма-лучей на кристалле доказал электромагнитную природу гамма-излучения.

Гамма-излучение может испускаться атомными ядрами и элементарными частицами, а также в результате ядерных реакций и реакций между частицами, в частности аннигиляции пар частица - античастица. Гамма-излучение может поглощаться атомными ядрами и способно вызывать превращения частиц. Изучение спектров гамма-излучения, возникающего в процессах взаимодействия частиц, и гамма-излучения ядер даёт информацию о структуре этих микрообъектов.

Гамма-излучение ядер испускается при переходах ядра из состояния с большей энергией в состояние с меньшей энергией, и энергия испускаемого гамма-кванта с точностью до незначительной энергии отдачи ядра равна разности энергий этих состояний (уровней) ядра. Энергия ядерного гамма-излучения лежит в интервале от нескольких кэВ до нескольких МэВ; спектр этого излучения линейчатый, т. е. состоит из ряда дискретных линий. Изучение спектров ядерного гамма-излучения позволяет определить энергии состояний (уровней) ядра.

При распаде частиц и реакциях с их участием обычно испускаются гамма-кванты с энергиями в десятки - сотни МэВ.

Гамма-излучение может также возникать при торможении быстрых заряженных частиц в среде (тормозное излучение) или при их движении в сильных магнитных полях (синхротронное излучение). Тормозное гамма-излучение имеет сплошной спадающий с ростом энергии спектр, верхняя граница которого совпадает с кинетической энергией заряженной частицы. На ускорителях заряженных частиц энергия тормозного гамма-излучения достигает десятков ГэВ.

Гамма-излучение можно получить при соударении электронов большой энергии от ускорителей с интенсивными лазерными пучками. При этом электрон передаёт свою энергию оптическому фотону, который превращается в гамма-квант. Аналогичное явление может иметь место и в космическом пространстве. Космические гамма-лучи приходят от пульсаров, радиогалактик, квазаров, сверхновых звёзд (смотри Гамма-астрономия).

Гамма-излучение обладает большой проникающей способностью, т. е. может проходить сквозь большие толщи вещества. Интенсивность узкого пучка моноэнергетических гамма-квантов падает экспоненциально с ростом проходимого им в веществе расстояния. Основные процессы взаимодействия гамма-излучения с веществом - фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (Комптона эффект) и образование пар электрон - позитрон.

Гамма-излучение используется в технике (например, в дефектоскопии), радиационной химии для инициирования химических превращений (например, при полимеризации), сельском хозяйстве, пищевой промышленности, медицине и др.

Лит.: Де Бенедетти С. Ядерные взаимодействия. М., 1968; Фрауэнфельдер Г., Хенли Э. Субатомная физика. М., 1979; Валантэн Л. Субатомная физика: ядра и частицы. М., 1986. Т. 2; Мухин К. Н. Экспериментальная ядерная физика. М., 1993. Кн. 1. Ч. 1.

И. М. Капитонов.

Действие на организм. Гамма-излучение действует на живые клетки подобно другим видам ионизирующих излучений. Хотя биосфера подвергается постоянному воздействию гамма-излучения в составе космических лучей и излучений радиоактивных элементов, находящихся в рассеянном виде в почвах, атмосфере и воде (радиационный фон Земли), их интенсивность невелика, и они не представляют опасности для живых организмов. Действие гамма-излучения проявляется по мере накопления вторичных электронов в объекте облучения и их переноса в близлежащие структуры. Тотальное гамма-нейтронное облучение организмов, сопровождающее ядерные взрывы, в зависимости от дозы может приводить к гибели организмов (для человека смертельная доза - 100 Гр), развитию лучевой болезни (при дозах 5-10 Гр). Воздействие более низких доз опасно отдалёнными последствиями: злокачественным перерождением клеток, развитием лейкозов, рождением генетически неполноценного потомства и др. Гамма-излучение применяют в медицине при лечении онкологических заболеваний (гамма-терапия; смотри Лучевая терапия). Оно используется также в генетических исследованиях для получения мутаций в молекулах ДНК и селекции организмов с последующим отбором хозяйственно полезных форм. Таким образом, например, были получены высокопродуктивные штаммы микроорганизмов, продуцирующих антибиотики. В качестве источников гамма-излучения применяют естественные и искусственные радиоактивные изотопы (обычно 60 Со, реже 137 Cs).

Не нужно пугаться этого слова: оно обозначает попросту радиоактивные изотопы. Иногда в речи можно услышать слова «радионуклеид», или еще менее литературный вариант - «радионуклеотид». Правильный термин - именно радионуклид. Но что такое радиоактивный распад? Каковы свойства разных видов излучения и чем они отличаются? Обо всем - по порядку.

Определения в радиологии

С тех времен, когда произошел взрыв первой атомной бомбы, многие понятия из радиологии претерпели изменения. Вместо фразы «атомный котел» принято говорить «атомный реактор». Вместо словосочетания «радиоактивные лучи» пользуются выражением «ионизирующие излучения». Словосочетание «радиоактивный изотоп» заменено на «радионуклид».

Долгоживущие и короткоживущие радионуклиды

Альфа-, бета- и гамма-излучения сопровождают процесс распада атомного ядра. Что такое Ядра радионуклидов не являются стабильными - этим они и отличаются от других устойчивых изотопов. В определенный момент запускается процесс радиоактивного распада. Радионуклиды при этом превращаются в другие изотопы, в процессе чего испускаются альфа-, бета- и гамма-лучи. Радионуклиды имеют разный уровень нестабильности - некоторые из них распадаются в течение сотен, миллионов и даже миллиардов лет. К примеру, все изотопы урана, которые встречаются в природе, являются долгоживущими. Есть и такие радионуклиды, которые распадаются в течение секунд, дней, месяцев. Они зовутся короткоживущими.

Выброс альфа-, бета- и гамма-частиц сопровождает не любой распад. Но на самом деле радиоактивный распад сопровождается только выбросом альфа- или бета-частиц. В некоторых случаях этот процесс происходит в сопровождении гамма-лучей. Чистое гамма-излучение в природе не встречается. Чем больше скорость распада радионуклида, тем выше его уровень радиоактивности. Некоторые считают, что в природе существует альфа-, бета-, гамма- и дельта-распад. Это неверно. Дельта-распада не существует.

Единицы измерения радиоактивности

Однако в чем измеряется эта величина? Измерение радиоактивности позволяет выразить интенсивность распада в цифрах. Единица измерения активности радионуклида - беккерель. 1 беккерель (Бк) означает, что 1 распад происходит в 1 сек. Когда-то для этих измерений использовалась гораздо более крупная единица измерения - кюри (Ки): 1 кюри = 37 млрд беккерелей.

Естественно, сопоставлять необходимо одинаковые массы вещества, например 1 мг урана и 1 мг тория. Активность взятой единицы массы радионуклида называется удельной активностью. Чем больше период полураспада, тем меньше удельная радиоактивность.

Какие радионуклиды представляют собой большую опасность?

Свойства гамма-лучей

Этот вид излучения имеет ту же природу, что и ультрафиолетовое излучение, инфракрасные лучи или радиоволны. Гамма-лучи представляют собой фотонное излучение. Однако с чрезвычайно высокой скоростью фотонов. Этот тип излучения очень быстро проникает сквозь материалы. Чтобы задержать его, обычно используют свинец и бетон. Гамма-лучи способны преодолевать тысячи километров.

Миф об опасности

Сравнивая альфа-, гамма- и бета-излучение, люди обычно считают гамма-лучи наиболее опасными. Ведь они образуются при ядерных взрывах, преодолевают сотни километров и вызывают лучевую болезнь. Все это верно, однако не имеет непосредственного отношения к опасности лучей. Так как в этом случае говорят именно об их проникающей способности. Конечно, альфа-, бета- и гамма-лучи различаются в этом отношении. Однако опасность оценивается не проникающей способностью, а поглощенной дозой. Этот показатель высчитывается в джоулях на килограмм (Дж/кг).

Таким образом, измеряется дробью. В ее числителе находится не количество альфа-, гамма- и бета-частиц, а именно энергия. К примеру, гамма-излучение может быть жестким и мягким. Последнее обладает меньшей энергией. Продолжая аналогию с оружием, можно сказать: значение имеет не только калибр пули, важно и то, из чего производится выстрел - из рогатки или из дробовика.

    Гамма-излучение - (g излучение), коротковолновое электромагнитное излучение (длина волны l … Иллюстрированный энциклопедический словарь

    - (см. гамма) гамма лучи электромагнитное излучение, испускаемое радиоактивными веществами (см. также альфа лучи и бета лучи); гамма излучение той же природы, что и рентгеновског излучение, но с гораздо меньшей длиной волны и большей проникающей… … Словарь иностранных слов русского языка

    Поток фотонов с очень высокой частотой, что соответствует короткой длине волны (10 12 м). Энергия гамма фотонов имеет порядок 1 МэВ. Ионизирующая способность гамма лучей невелика (1 2 пары ионов на 1 см “пробега”). Гамма лучи являются одним из… … Экологический словарь

    - (g излучение), коротковолновое эл. магн. излучение. Г. и. обладает чрезвычайно малой длиной волны (l?10 8 см) и вследствие этого ярко выраженными корпускулярными св вами, т. е. является потоком ч ц гамма квантов (фотонов) с энергией?g=hw (w… … Физическая энциклопедия

    - (гамма лучи), ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ с очень короткими длинами волн, испускаемое ядрами некоторых РАДИОАКТИВНЫХ АТОМОВ. Обладает очень высокой энергией; по проникающей способности выше, чем РЕНТГЕНОВСКИЕ ЛУЧИ, поэтому вещества, обладающие… … Научно-технический энциклопедический словарь

    гамма-излучение - Фотонное излучение, возникающее в процессе ядерных превращений или при аннигиляции частиц. [РМГ 78 2005] гамма излучение Электромагнитное ионизирующее излучение, эмитируемое особыми радиоактивными материалами [Система неразрушающего контроля.… … Справочник технического переводчика

    - (? излучение) коротковолновое электромагнитное излучение с длиной волны 10 8 см, возникающее при распаде радиоактивных ядер и элементарных частиц, взаимодействии быстрых заряженных частиц с веществом (см. Тормозное излучение), аннигиляции… … Большой Энциклопедический словарь

    ГАММА ИЗЛУЧЕНИЕ, гамма излучения, ср. (спец.). Коротковолновое электромагнитное излучение, испускаемое радиоактивными веществами. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    - (вид ионизирующего излучения) Gamma radiation электромагнитное излучение, испускаемое при радиоактивном распаде и ядерных реакциях, распространяющееся со скоростью света и обладающее большой энергией и проникающей способностью. Эффективно… … Термины атомной энергетики

    Гамма-излучение - (γ излучение) коротковолновое электромагнитное излучение с длиной волны < 10−10 м, возникающее при распаде радиоактивных ядер и элементарных частиц, при взаимодействии быстрых заряженных частиц с веществом (тормозное излучение), при… … Российская энциклопедия по охране труда

    гамма-излучение - гамма излучение; отрасл. гамма лучи Квантовое излучение атомных ядер … Политехнический терминологический толковый словарь

Книги

  • Теоретические основы физических процессов ядерного взрыва , Любомудров А.А.. Излагаются теоретические основы процессов, протекающих при ядерном взрыве. Рассматриваются начальные процессы ядерного взрыва, ударная волна, волны сжатия в грунте и приводятся методы расчета…
Понравилась статья? Поделитесь ей