Контакты

Эндокринный гомеостаз взаимодействие желез внутренней секреции. Взаимодействие желез внутренней секреции

Гуморальная регуляция - это регуляция процессов жизнедеятельности с помощью веществ, поступающих во внутреннюю среду организма (кровь, лимфу, ликвор и др.). К факторам гуморальной регуляции относятся гормоны, электролиты, медиаторы, кинины, простагландины, различные метаболиты и т.д. Гуморальная регуляция обеспечивает более длительные адаптивные реакции в сравнении с нервной, которая осуществляет запуск быстрых приспособительных реакций при изменениях внешней или внутренней среды.

Эндокринная железа, или железа внутренней секреции - это анатомическое образование, лишенное выводных протоков, единственной или основной функцией которого является внутренняя секреция гормонов.

Гормоны - это биологически высокоактивные вещества, синтезирующиеся и выделяющиеся во внутреннюю среду организма эндокринными железами, и оказывающие регулирующее влияние на функции удаленных от места их секреции органов и систем организма.

Общие биологические свойства гормонов: строгая специфичность (тропность) физиологического действия; высокая биологическая активность; дистантный характер действия; генерализованность действия; пролонгированность действия.

Общие функции гормонов: 1)регуляция роста, развития и дифференцировки тканей и органов, что определяет физическое, половое и умственное развитие; 2)адаптация организма к меняющимся условиям существования; 3)поддержание гомеостаза.

В состоянии покоя 80% циркулирующих в крови гормонов находится в комплексе со специфическими белками, являясь депо, или физиологическим резервом. Биологическая активность определяется содержанием свободных форм гормонов. Обязательным условием для проявления эффектов гормона является его взаимодействие с рецепторами.

Основные механизмы действия гормонов: 1)Реализация эффекта с наружной поверхности клеточной мембраны (связывание с специфическими рецепторами на поверхности мембраны, сопряженными с G-белками, активирующими или ингибирующими аденилатциклазу, под действием которой из АТФ образуется цАМФ; цАМФ активирует протеинкиназу, фосфорилирующую белки). В качестве вторичных посредников кроме цАМФ могут быть цГМФ, инозитол-1,4,5- трифосфат, ионы кальция. Так действуют белково-пептидные гормоны, катехоламины, простагландины. 2)Реализация эффекта после проникновения гормона внутрь клетки (связывание гормона с специфическими рецепторами в цитоплазме или ядре, связывание гормон-рецепторного комплекса с ДНК и белками хроматина, что стимулирует траскрипцию определенных генов, трасляция мРНК приводит к появлению в клетке новых белков, вызывающих биологический эффект этих гормонов). Так действуют стероидные и йодсодержащие тиреоидные гормоны, обладающие липофильностью.

Функциональная классификация гормонов: 1)Эффекторные гормоны; 2)Тропные гормоны; 3)Рилизинг-гормоны.

Гипоталамо-гипофизарная система. Гипоталамус вырабатывает нейрогормоны - рилизинг-гормоны. Среди рилизинг гормонов различают либерины - стимуляторы синтеза и выделения гормонов аденогипофиза и статины - ингибиторы секреции, например: тиреолиберин, кортиколиберин, соматолиберин. В свою очередь тропные гормоны аденогипофиза (кортикотропин, тиреотропин, гонадотропин) регулируют секрецию эффекторных гормонов рядом других периферических желез внутренней секреции.

Гормоны передней доли гипофиза: : адренокортикотропный, тиреотропный, гонадотропные (фолликулостимулирующий и лютеинизирущий), соматотропный, пролактин.

Гормоны задней доли гипофиза: антидиуретический гормон, или вазопрессин, и окситоцин образуются в гипоталамусе; в нейрогипофизе происходит их накопление и секреция в кровь.

Щитовидная железа вырабатывает йодсодержащие гормоны (тироксин и трийодтиронин) и кальцитонин. Функции йодсодержащих гормонов: усиление всех видов обмена (белковый, липидный, углеводный), повышение основного обмена и усиление энергообразования в организме; влияние на процессы роста, физическое и умственное развитие; увеличение частоты сердечных сокращений; повышение температуры тела; повышение возбудимости симпатической нервной системы. Кальцитонин участвует в регуляции кальциевого обмена (угнетение функции остеокластов и активация функции остеобластов, усиление процессов минерализации, угнетение реабсорбции кальция в почках и увеличение его выделения с мочой, гипокальциемия) и фосфатов (угнетение рабсорбции фосфатов в почке и усиление выделения их с мочой).

Паращитовидные (околощитовидные) железы. Вырабатывают паратгормон, регулирующий обмен кальция (усиление функции остеокластов, деминерализация кости, усиление реабсорбции кальция в почках, гиперкальциемия) и фосфора (угнетение обратного всасывания в почках, фосфатурия) в организме.

Надпочечники. Гормоны коркового вещества надпочечников: минералокортикоиды (альдостерон и др.), глюкокортикоиды (кортизол и др.), половые гормоны.

Эффекты альдостерона: усиление реабсорбции ионов натрия и хлора в дистальных почечных канальцах, увеличение экскреции ионов калия, возрастание реабсорбции воды, увеличение объема циркулирующей крови, повышение артериального давления, уменьшение диуреза; провоспалительное действие.

Эффекты глюкокортикоидов: стимуляция глюконеогенеза (гипергликемия), катаболическое влияние на белковый обмен, активация липолиза, противовоспалительное действие, угнетение клеточного и гуморального иммунитета, противоаллергическое действие, повышение чувствительности гладких мышц сосудов к катехоламинам.

Половые гормоны имеют значение только в детском возрасте.

Гормоны мозгового вещества надпочечников: адреналин и норадреналин. Адреналин стимулирует деятельность сердца, сужает сосуды, кроме коронарных,сосудов легких, головного мозга, работающих мышц, которые он расширяет; расслабляет мышцы бронхов, тормозит перистальтику и секрецию пищеварительного тракта и повышает тонус сфинктеров, расширяе зрачок, уменьшает потоотделение, усиливает процессы катаболизма и образования энергии, усиливает расщепление гликогена в печени и мышцах, активирует липолиз, активирует термогенез.

Поджелудочная железа (эндокринная функция). Вырабатывает гормоны инсулин, глюкагон, соматостатин, панкреатический полипептид, основным из которых является инсулин. Инсулин прежде всего влияет на углеводный обмен (способствует глюкогенезу в печени и мышцах, вызывает гипогликемию, повышает проницаемость клеточной мембраны для глюкозы, стимулирует синтез белка из аминокислот, уменьшает катаболиз белков, усиливает процессы липогенеза. Глюкагон является антагонистом инсулина. Он усиливает распад гликогена в печени,

вызывает гипергликемию.

Половые железы. Мужские половые гормоны (андрогены), наиболее важным является тестостерон. Тестостерон участвует в половой дифференцировке гонады, обеспечивает развитие первичных и вторичных мужских половых признаков, появление половых рефлексов; обладает выраженным анаболическим действием.

Женские половые гормоны: эстрогены (эстрон, эстрадиол, эстриол) и прогестерон. Эстрогены (вырабатываются в яичниках) стимулируют развитие первичных и вторичных женских половых признаков, стимулируют рост и развитие молочных желез, обладают анаболическим действием, усиливают образование жира и распределение его типичное для женской фигуры, способствуют оволосению по женскому типу. Главная функция прогестерона (гормона желтого тела яичников) - подготовка эндометрия к имплантации оплодотворенной яйцеклетки и обеспечение нормального протекания беременности. У небеременных женщин прогестерон участвует в регуляции менструального цикла.

Эндокринной активностью обладают также и другие органы. Почки синтезируют и секретируют в кровь ренин, эритропоэтин, кальцитриол. В предсердиях вырабатывается натрийуретический гормон. Клетки слизистой оболочки желудка и тонкой кишки (клетки АПУД-системы) секретируют большое количество пептидных соединений: секретин, гастрин, холецистокинин-панкреозимин, бомбезин, мотилин, соматостатин, нейротензин и другие, значительная часть которых обнаружена и в мозге.

Занятие 1. Железы внутренней секреции. Гипоталамо-

гипофизарная система. Надпочечники.

(Доклады студентов)

Задача 1. Влияние адреналина, ацетилхолина, пилокарпина, атропина на

мышцы радужной оболочки глаза лягушки (Пр. стр. 277).

Занятие 2. Семинар. Щитовидная и паращитовидные железы.

Поджелудочная железа. (Доклады студентов).

Занятие 3. Половые железы. (Доклады студентов).

Реферат на тему:


Основные механизмы регуляции активности эндокринных желез

1. Автономная (базальная) саморегуляция активности эндокринной функции. Основана на обратном влиянии обменных процессов. Установлена в экспериментах с перфузией железы растворами, содержащими регулируемый фактор (метаболит) в различных концентрациях. Характеризуется следующей закономерностью: регулируемый железой метаболит оказывает стимулирующее действие на эндокринную функцию, если гормон снижает его содержание, но тормозит ее, если гормон повышает содержание метаболита (пример: влияние уровня глюкозы крови на выделение инсулина и глюкагона). Этот механизм - основа поддержания метаболического гомеостаза.

2.Взаимодействие между гипофизом и железами-мишенями. Основано на прямой (положительной, стимулирующей) связи и обратной (отрицательной, тормозящей) связи, носит также название «плюс- минус-взаимодействие». Например, аденогипофиз выделяет АКТГ, оказывающий стимулирующее действие на кору надпочечников и выделение кортизола, который, в свою очередь, тормозит секрецию АКТГ. Этот принцип является основой саморегуляции активности эндокринной системы и обеспечивает поддержание эндокринного гомеостаза.

3.Нервный контроль эндокринной активности. Осуществляется через гипоталамус. Основные пути:

1)парааденогипофизарный (нервно-проводниковый), реализуется через симпатические и парасимпатические нервы желез;

2)трансгипофизарный, включающий гипоталамические факторы (гормоны) и гуморальный контроль функции аденогипофиза.

Известные транспортные системы, обеспечивающие движение БАВ в гипофиз:

1) выделение в портальную систему гипофиза гипоталамических факторов, активирующих (либерины) или угнетающих (статины) гормонопоэз в передней доле гипофиза;

2) аксональный транспорт - перенос нейрогормонов (вазопрессина и окситоцина) из нейросекреторных ядер (супраоптического и паравентрикулярного) в заднюю долю гипофиза.

Гипоталамическая регуляция функций аденогипофиза контролируется отрицательной обратной связью. Например, кортиколиберин увеличивает секрецию АКТГ, который тормозит активность гипоталамических клеток, продуцирующих кортиколиберин. В системе регуляции активности длинных эндокринных осей «гипоталамус-гипофиз-железа-мишень» эта петля обратной связи носит название «короткой». Второй вариант регуляции активности такой же оси - «длинная петля» обратной связи, т.е. взаимодействие между гипоталамусом и железой-мишенью, основанное на чувствительности гипоталамических нейронов, продуцирующих соответствующий рилизинг-фактор, к гормону соответствующей железы-мишени. Все эти взаимодействия обеспечивают поддержание эндокринного гомеостаза.

4. Внешний контроль. В нем принимают участие лимбические структуры, старая и новая кора, через которые осуществляются воздействия из внешней среды (холод, тепло, свет, факторы, вызывающие психическое и эмоциональное напряжение и т.д.). Внешний контроль переводит эндокринную систему на иной функциональный уровень, соответствующий новым потребностям организма, т.е. обеспечивает адаптацию к меняющимся условиям внешней среды.

Биологическое значение эндокринной функции:

1) поддержание гомеостаза;

2) формирование адаптивных (приспособительных) реакций.


Механизмы компенсации нарушенной функции эндокринной железы

Изменения функций эндокринных желез, происходящие под влиянием повреждающих факторов среды, как правило, сопровождаются нарушениями в организме обмена веществ и физиологических функций. Соответственно, компенсаторные процессы в эндокринной системе следует разделить на две основные группы:

1)компенсация нарушенной функции самой эндокринной железы;

2)компенсация нарушенных процессов метаболизма и физиологических функций, регулируемых в организме эндокринной железой, при недостаточности ее гормонов.

Механизмы компенсаторных процессов первой группы могут быть как внутриорганными и внутрисистемными, так и межсистемными. Во-первых, компенсация нарушенной функции той или иной железы осуществляется за счет механизмов саморегуляции на уровне самой железы или системной регуляции по принципу обратной связи. Во-вторых, компенсация реализуется, как и в большинстве других органов, за счет мобилизации процессов физиологической и репаративной регенерации, способность к которой у железистой ткани достаточно высока. В-третьих, компенсаторные процессы осуществляются за счет изменения функций других систем организма, например, обеспечивающих всасывание необходимых для синтеза гормонов железы субстратов в желудочно-кишечном тракте, транспорт гормонов в свободном состоянии и в составе белковых комплексов, метаболизм и деградацию гормонов, экскрецию гормонов, наконец, связывание гормонов на уровне эффектора.

Компенсаторные процессы второй группы реализуются благодаря тому, что в регуляции основных метаболических и функциональных процессов принимает участие, как правило, несколько гормонов разных эндокринных желез, что позволяет компенсировать недостаточность или избыточность одних гормонов эффектами других (внутрисистемная компенсация). Компенсаторные процессы этой группы осуществляются и за счет межсистемных реакций с помощью нервной регуляции и саморегуляции метаболических и физиологических функций.

Поскольку механизмы саморегуляции функции эндокринной железы, прежде всего, связаны с процессами депонирования гормонов, их предшественников и даже субстратов в самой железе, создаваемый таким образом запас гормонов, предшественников и субстратов может обеспечить быструю, но кратковременную компенсацию возникающего в организме дефицита субстрата или повышенной потребности в гормоне. Так, в коллоиде щитовидной железы, находящемся в фолликулах, хранятся йодтиронины и йодтирозины и даже свободный йодид.

Ауторегуляция синтеза и секреции тиреоидных гормонов на уровне самой железы обеспечивается уровнем йода. Недостаток его активирует экстракцию йодида из крови, возрастание кровотока через щитовидную железу и ускорение биосинтеза тиреоидных гормонов. Напротив, избыток йодида подавляет синтез и секрецию тиреоидных гормонов. Механизм ингибирующего действия йодида, как правило, проявляющегося в условиях избыточной продукции гормонов, заключается в снижении экстракции йодида из крови, торможении процессов органического связывания йода, а также подавлении секреции гормонов железой. Назначение йодида с лечебной целью практикуется у больных с гиперфункцией щитовидной железы, при зобе. Избыточность ингибирующего влияния чрезмерных дозировок йодида у больных с гипертиреоидным зобом ведет к переходу гипертиреоидного состояния в эутиреоидное.

Для компенсации нарушенной функции эндокринной железы важнейшее значение имеет системный уровень регуляции, реалиизующийся с помощью механизма обратной связи. Так, регуляция функции щитовидной железы обеспечивается гипоталамо-аденогипофизарной системой с помощью пептидов: тиреолиберина гипоталамуса и тиреотропина гипофиза. Изменение уровня гормонов щитовидной железы в крови (преимущественно трийодтиронина) вызывает противоположные сдвиги в синтезе и секреции этих пептидов. При дефиците тиреоидных гормонов повышающийся по принципу обратной связи уровень тиреотропина в крови способствует активации в щитовидной железе всех биосинтетических и секреторных процессов, а также стимулирует трофику и пластические процессы, физиологическую и репаративную регенерацию, что ведет к восстановлению сниженной функции железы.

Необходимым условием регенерации железы после ее повреждения является наличие определенной концентрации в крови тиреоидных гормонов, продуцируемых поврежденными структурами железы. Это связано с тем, что гормоны щитовидной железы необходимы для процессов биосинтеза белка и деления клеток в организме. Они стимулируют регенерацию большинства тканей организма вообще и самой железы в частности. Таким образом, при полном прекращении секреции тиреоидных гормонов или снижении их концентрации в крови ниже порогового уровня регенерация железы даже при избытке тиреотропина оказывается невозможной. Если функция железы снижена в результате дефицита йода или если повреждение ее структур оказалось столь значительным, что привело к резкому уменьшению уровня тиреоидных гормонов в крови, мобилизуемый в кровь по механизму обратной связи тиреотропин вызывает не регенерацию, а компенсаторную гипертрофию железы. Следовательно, процессы регенерации будут тем слабее, чем меньше остается неповрежденной ткани (например, после резекции).

При недостаточности процессов регенерации щитовидной железы иногда возникает необходимость в их искусственной стимуляции. Искусственное управление регенерацией щитовидной железы требует экзогенного введения тщательно дозируемых оптимальных количеств тиреоидных гормонов, чтобы, с одной стороны, стимулировать процессы регенерации, а с другой - не подавить их избытком повышенной секреции тиреотропина.

Регенераторная способность высока и в других эндокринных железах, в частности в надпочечниках. Так, гиперфункция коры надпочечников, вызванная, например, избыточной стимуляцией кортикотропином гипофиза, приводит к ее гипертрофии вследствие усиления секреторного процесса. При этом происходит и перестройка структуры коры с преимущественным увеличением массы клеток пучковой зоны. Регенерация коры надпочечников есть следствие первичного повреждения ткани, и хотя при этом механизм обратной связи приводит к повышению в крови уровня кортикотропина, для полноценной регенерации необходимы и другие вещества - клеточные стимуляторы регенерации, тиреоидные гормоны, а также предшественники синтеза и метаболиты стероидных гормонов коры надпочечников. Процесс регенерации коры надпочечников развивается при различных степенях повреждения, даже при энуклеации, то есть почти полном удалении. Формирующаяся при регенерации перестройка метаболических процессов ведет к изменению количественных и качественных характеристик биосинтеза стероидных гормонов, что не только вызывает стимуляцию репаративных процессов в самой коре надпочечников, но и влияет на функции организма, нередко приводя к вторичным нарушениям. Так, следствием регенерации коры надпочечников является артериальная гипертензия. В экспериментах на животных показано, что повреждение коры надпочечников, воспроизводимое разными способами (раздавливанием, прошиванием, энуклеацией и т.п.), приводит к формированию артериальной гипертензии, получившей название «регенерационной».

Компенсация нарушенных функций эндокринных желез осуществляется и на межсистемном уровне. Так, биологическая активность секретируемых в кровь гормонов меняется в результате их связывания с транспортными белками крови. Избыточная секреция кортизола корой надпочечников ведет к увеличению в крови не только свободной, но и связанной с транскортином формы гормона, а избыточное связывание гормона с транспортными белками уменьшает его биологическую активность. Это происходит в торпидную фазу травматического шока, когда повышенная секреция кортизола сопровождается избыточным образованием связанной формы гормона. Напротив, в начальную фазу стресса («реакция тревоги» по Г. Селье) происходит высвобождение кортизола из связи с транскортином, что ведет к увеличению в крови концентрации биологически активной формы гормона и является необходимым условием защитной реакции организма. Благодаря образованию нескольких транспортных форм гормона осуществляется более значимая компенсация избыточных количеств гормона в крови. Так, при повышении концентрации кортизола в крови до уровня > 1,0 мкмоль/л часть гормона связывается также с альбумином крови.

Компенсация избыточной секреции в кровь гормонов осуществляется и через активацию их разрушения в печени, метаболических превращений в тканях-мишенях и экскреции с мочой. При не- достаточном синтезе и секреции гормонов эти процессы, напротив, протекают менее интенсивно. К компенсаторным процессам межсистемного уровня относится и изменение депонирования гормо- нов в тканях. Так, при тиреотоксикозе в миокарде снижается содержание депонированных катехоламинов, поскольку при повышенном уровне тироксина нарушаются процессы окислительного фосфорилирования, и развивается дефицит АТФ, а также тормозится активность дофадекарбоксилазы. Избыточное количество в крови тиреоидных гормонов вызывает повышение чувствительности тканей, в частности сердца, к катехоламинам. Уменьшение количества катехоламинов в миокарде, таким образом, является важным механизмом снижения влияния избыточных количеств тиреоидных гормонов на сердечную мышцу.

Компенсаторные реакции на уровне эффектора нередко подчиняются правилу исходного состояния. Сущность этого правила заключается в том, что исходное состояние функциональной активности ткани, органа или системы определяет величину и характер их реакции на раздражитель. Так, в условиях повышенной функциональной активности эффектора (включая и уровень обмена веществ) гормоны-активаторы функции могут вообще не вызывать эффекта либо вести к ослабленному или даже противоположному (то есть угнетающему) эффекту. Напротив, при ослабленной функциональной активности эффектора такие гормоны-стимуляторы вызывают, как правило, более мощный активирующий эффект. Подобной закономерности подчиняются и метаболические эффекты гормонов. Например, в условиях повышенного катаболизма белка в организме глюкокортикоиды либо теряют свой катаболический эффект, либо проявляют его несколько слабее, либо вызывают даже анаболическое действие. В механизмах реализации правила исходного состояния, наряду с действием гормонов-антагонистов и процессами саморегуляции метаболизма, существенную роль играет зависящее от функциональной активности клеток изменение количества и аффинности клеточных мембранных рецепторов гормонов.

Компенсация избытка или недостатка уровня гормонов в крови может также осуществляться на уровне тканей-мишеней посредством изменения числа и аффинности клеточных мембранных рецепторов, приводя к десенситизации клеток в условиях избытка гормонов или к их сенситизации при гормональном дефиците.

Компенсация нарушений процессов метаболизма и физиологических функций, регулируемых эндокринной железой, при недостаточности ее гормонов. Наиболее значимую роль в компенсации нарушений деятельности эндокринных желез играют компенсаторные процессы, направленные не на поддержание секреторной деятельности железы, уровня гормона в крови или его влияния на органы-мишени, а на обеспечение компенсации недостаточных или избыточных эффектов гормона, то есть компенсации нарушений регулируемых гормоном процессов - метаболических и функциональных.

Один из важнейших механизмов такой компенсации связан с наличием синергизма и антагонизма эффектов гормонов разных эндокринных желез. Так, адреналин, глюкагон, глюкокортикоиды, соматотропин повышают уровень глюкозы в крови за счет расщепления гликогена, глюконеогенеза и подавления утилизации глюкозы периферическими тканями. Инсулин противодействует этим эффектам и вызывает гипогликемию. Примерами синергизма (частичного) могут служить эффекты паратирина и кальцитриола (активация всасывания кальция в кишечнике), а антагонизма – эффекты паратирина (гиперкальциемия) и кальцитонина (гипокальциемия). Как правило, синергизм и антагонизм эффектов гормонов являются неполными, поэтому компенсация одних нарушений метаболизма и функций сопровождается усугублением других. Это особенно ярко тпроявляется в процессе формирования нарушений деятельности эндокринной железы, когда нерезкие, предпатологические отклонения функции компенсируются, а более выраженные - проявляются.

Деятельность эндокринных желез взаимозависима. Эта взаимосвязь выражается не только в изменениях синтеза и секреции гормонов одной железы под влиянием гормонов другой (например, кортикостероиды подавляют функцию щитовидной железы), но и в соответствующих процессах на уровне эффекторов (например, паратирин ингибирует антидиуретический эффект вазопрессина). Способность гормонов менять реакцию ткани-мишени на действие других гормонов и нейромедиаторов, получившая название «реактогенное действие гормонов», является одним из важных механизмов компенсации нарушенных в организме метаболических процессов и физиологических функций при патологии эндокринной системы. Так, например, при нерезком дефиците соматотропина на- рушения роста тела не происходит благодаря реактогенному дейст- вию инсулина и инсулиноподобных факторов роста, повышающих чувствительность тканей к соматотропину.


Основные механизмы нарушения функций эндокринных желез

Ветви нерва подходят к надпочечникам, выделяют ацетилхолин и вызывают усиление синтеза и секреции адреналина и норадреналина железой.

Мозговой слой надпочечников и симпатическая нервная система, будучи тесно связанными друг с другом функционально, обозначаются термином «симпато-адреналовая система». Наиболее ярко повреждение функции симпато-адреналовой системы проявляется при феохромоцитоме.

Феохромоцитома - катехоламинпродуцирующая опухоль хромаффинной ткани, локализующаяся в мозговом веществе надпочечников.

Продукция катехоламинов при феохромоцитоме повышена в десятки раз. Ведущим физиологическим механизмом нарушений при феохромоцитоме является артериальная гипертензия (возрастает уровень норадреналина).

Нервные окончания, подходящие к другим эндокринным железам, вступают в синаптические контакты с кровеносными сосудами, которые оплетают гормонпродуцирующие клетки. В этих случаях перерезка нервов или их раздражение нарушает кровоснабжение желез, тем самым опосредованно изменяя их функцию.

Второй механизм регуляции - нейроэндокринный (гипоталамический, трансгипофизарный). В данном случае регулирующее влияние ЦНС на физиологическую активность желез внутренней секреции реализуется через гипоталамус, который является конечным морфологическим образованием, обеспечивающим функциональную связь головного мозга с эндокринной системой.

Основной механизм деятельности гипоталамических нейронов - трансформация нервного импульса в специфический эндокринный процесс, который сводится к биосинтезу гормона в теле нейро- на и сбрасыванию образовавшегося секрета из окончаний аксона в кровь.

При этом осуществляется два типа нейроэндокринных реакций: один из них связан с образованием и секрецией ризилинг-факторов- главных регуляторов секреции гормонов аденогипофиза, другой - с образованием нейрогипофизарных гормонов.

В первом случае гипоталамические гормоны образуются в ядрах среднего и заднего отделов подбугровой области, затем поступают по аксонам их нейронов в область среднего возвышения, где могут накапливаться и далее проникать в специальную систему портальной циркуляции аденогипофиза. Эти высокоактивные вещества (нейросекреты, нейрогормоны) избирательно регулируют гормонообразовательные процессы аденогипофиза.

По направленности эффекта гипоталамические рилизинг-факторы делятся на гипофизарные либерины и статины.

Изменение центральной эндокринной регуляции может быть связано с первичным изменением выработки рилизинг-факторов или тропных гормонов, в результате которого возникают вторичные нарушения функции эндокринной железы (вторичные эндокринопатии). Эндокринопатии, вызванные прямым повреждением ткани железы, получили название первичных.

Во втором случае гормоны образуются в ядрах переднего гипоталамуса, спускаются по аксонам в заднюю долю гипофиза, где депонируются, а оттуда могут поступать в системную циркуляцию и действовать на периферические органы (вазопрессин, АДГ и окситоцин).

Нарушение эндокринных механизмов регуляции

Эндокринная регуляция связана с непосредственным влиянием одних гормонов на биосинтез и секрецию других. Гормональную регуляцию эндокринных функций осуществляет несколько групп гормонов.

Особую роль в гормональной регуляции многих эндокринных функций играет передняя доля гипофиза. В различных ее клетках образуется ряд тропных гормонов (АКТГ, ТТГ, ЛГ, СТГ), основное значение которых сводится к направленной стимуляции функций и трофики некоторых периферических эндокринных желез (кора надпочечников, щитовидная железа, гонады). Все тропные гормоны имеют белково-пептидную природу (олигопептиды, простые белки, гликопротеиды).

После экспериментального хирургического удаления гипофиза зависимые от него периферические железы подвергаются гипотрофии, в них резко снижается гормональный биосинтез. Следствием этого является подавление процессов, регулируемых соответствующими периферическими железами. Аналогичная картина наблюдается у человека при полной недостаточности функции гипофиза (болезнь Симмондса). Введение тропных гормонов животным после гипофизэктомии постепенно восстанавливает структуру и функцию зависимых от гипофиза эндокринных желез.

К негипофизарным гормонам, непосредственно регулирующим периферические эндокринные железы, относятся, в частности, глюкагон (гормон а-клеток поджелудочной железы, который наряду с влиянием на углеводный и липидный обмен в периферических тканях может оказывать прямое стимулирующее действие на Р-клетки той же железы, вырабатывающие инсулин) и инсулин (непосредственно контролирует секрецию катехоламинов надпочечниками и СТГ гипофизом).

Нарушения в системе обратной связи

В механизмах регуляции «гормон-гормон» существует сложная система регуляторных взаимосвязей - как прямых (нисходящих), так и обратных (восходящих).

Разберем механизм обратной связи на примере системы «гипоталамус-гипофиз-периферические железы».

Прямые связи начинаются в гипофизотропных областях гипоталамуса, которые получают по афферентным путям мозга внешние сигналы к запуску системы.

Гипоталамический стимул в форме определенного рилизинг-фактора передается в переднюю долю гипофиза, где усиливает или ослабляет секрецию соответствующего тропного гормона. Последний в повышенных или сниженных концентрациях через системную циркуляцию поступает к регулируемой им периферической эндокринной железе и изменяет ее секреторную функцию.

Обратные связи могут исходить как от периферической железы (наружная обратная связь), так и от гипофиза (внутренняя обратная связь). Восходящие наружные связи заканчиваются в гипо- таламусе и гипофизе.

Так, половые гормоны, кортикоиды, тиреоидные гормоны могут оказывать через кровь обратное влияние и на регулирующие их области гипоталамуса, и на соответствующие тропные функции гипофиза.

Важное значение в процессах саморегуляции имеют также внутренние обратные связи, идущие от гипофиза к соответствующим гипоталамическим центрам.

Таким образом, гипоталамус:

С одной стороны, принимает сигналы извне и посылает приказы по линии прямой связи к регулируемым эндокринным железам;

С другой стороны, реагирует на сигналы, идущие изнутри системы от регулируемых желез по принципу обратной связи.

По направленности физиологического действия обратные связи могут быть отрицательными и положительными. Первые как бы самоограничивают, самокомпенсируют работу системы, вторые самозапускают ее.

При удалении периферической железы, регулируемой гипофизом, или при ослаблении ее функции секреция соответствующего тропного гормона возрастает. И наоборот: усиление ее функции приводит к торможению секреции тропного гормона.

Процесс саморегуляции функции желез по механизму обратной связи всегда нарушается при любой форме патологии эндокринной системы. Классическим примером может служить атрофия коры надпочечников при длительном лечении кортикостероидами (в первую очередь, глюкокортикоидными гормонами). Объясняется это тем, что глюкокортикоиды (кортикостерон, кортизол и их аналоги):

Являются мощными регуляторами углеводного и белкового обмена, вызывают повышение концентрации глюкозы в крови, тормозят синтез белка в мышцах, соединительной ткани и лимфоидной ткани (катаболический эффект);

Стимулируют образование белка в печени (анаболический эффект);

Повышают резистентность организма к различным раздражителям (адаптивный эффект);

Обладают противовоспалительным и десенсибилизирующим действием (в больших дозах);

Являются одним из факторов, поддерживающих артериальное давление, количество циркулирующей крови и нормальную проницаемость капилляров.

Указанные эффекты глюкокортикоидов обусловили их широкое клиническое применение при заболеваниях, в основе патогенеза которых лежат аллергические процессы либо воспаление. В этих случаях вводимый извне гормон по механизму обратной связи тормозит функцию соответствующей железы, но при длительном введении приводит к ее атрофии. Поэтому больные, прекратившие лечение препаратами глюкокортикоидных гормонов, попадая в ситуацию, когда под влиянием повреждающих факторов (операция, бытовая травма, интоксикация) у них развивается стрессовое состояние, не отвечают адекватным усилением секреции собственных кортикостероидов. В результате у них может развиться острая надпочечниковая недостаточность, которая сопровождается сосудистым коллапсом, судорогами, развитием комы. Смерть у таких больных может наступить через 48 часов (при явлениях глубокой комы и сосудистого коллапса). Аналогичная картина может наблюдаться при кровоизлиянии в надпочечники.

Значение механизма обратной связи для организма можно рассмотреть также на примере викарной гипертрофии одного из надпочечников после хирургического удаления второго (односторонняя адреналэктомия). Такая операция вызывает быстрое падение уровня кортикостероидов в крови, что усиливает через гипоталамус адренокортикотропную функцию гипофиза и приводит к повышению концентрации АКТГ в крови, следствием которого является компенсаторная гипертрофия оставшегося надпочечника.

Длительный прием тиреостатиков (или антитиреоидных веществ), подавляющих биосинтез гормонов щитовидной железы (метилурацил, мерказолил, сульфаниламиды), вызывает усиление секреции тиреотропного гормона, а это, в свою очередь, обусловливает разрастание железы и развитие зоба.

Важную роль механизм обратной связи играет также в патогенезе адреногенитального синдрома.

Неэндокринная (гуморальная) регуляция

Неэндокринная (гуморальная) регуляция - регулирующее действие на эндокринные железы некоторых негормональных метаболитов.

Этот способ регуляции в большинстве случаев является, по существу, самонастройкой эндокринной функции. Так, глюкоза, гуморально действуя на эндокринные клетки, изменяет интенсивность продукции инсулина и глюкагона поджелудочной железой, адреналина мозговым слоем надпочечников, СТГ аденогипофизом. Уровень секреции паратгормона околощитовидными железами и кальцитонина щитовидной железой, контролирующих кальциевый обмен, в свою очередь, регулируется концентрацией ионов кальция в крови. Интенсивность биосинтеза альдостерона корой надпочечников обусловлена уровнем ионов натрия и калия в крови.

Неэндокринная регуляция эндокринных процессов представляет собой один из важнейших способов поддержания метаболического гомеостаза.

Для ряда желез (а- и (3-клетки островкового аппарата поджелудочной железы, околощитовидные железы) гуморальная регуляция негормональными агентами по принципу самонастройки имеет первостепенное физиологическое значение.

Особый интерес приобретает образование негормональных факторов стимуляции деятельности эндокринных желез в условиях патологии. Так, при некоторых формах тиреотоксикоза и воспаления щитовидной железы (тиреоидит) в крови больных появляется длительно действующий тиреоидный стимулятор (longactingthyroidstimulator - LATS.

LATS представлен гормонально активными аутоантителами (IgG), вырабатываемыми к патологическим компонентам (аутоантигенам) клеток щитовидной железы. Аутоантитела, избирательно связываясь с клетками щитовидной железы, специфически стимулируют в ней процессы секреции тиреоидных гормонов, приводя к развитию патологической гиперфункции. Они действуют аналогично ТТГ, усиливая процессы синтеза и секреции щитовидной железой тироксина и трийодтиронина.

Не исключено, что аналогичные метаболиты могут образовываться и к специфическим белкам других эндокринных желез, вызывая нарушение их функции.

Периферические (внежелезистые) механизмы регуляции

Функция той или иной эндокринной железы зависит также от величины концентрации гормонов в крови, уровня их резервирования комплексообразующими (связывающими) системами крови, скорости их захвата периферическими тканями. В развитии многих эндокринных заболеваний весьма значительную роль могут играть:

1) нарушение инактивации гормонов в тканях и

2) нарушение связывания гормонов белками;

3) образование антител к гормону;

4) нарушение соединения гормона с соответствующими ре- цепторами в клетках-мишенях;

5) наличие антигормонов и их действие на рецепторы по меха- низму конкурентного связывания.

Антигормоны - вещества (в том числе гормоны), имеющие сродство к рецепторам данного гормона и взаимодействующие с ними. Занимая рецепторы, они блокируют эффект данного гормона.

Патологические процессы в железе – эндокринопатии

Одной из причин нарушения нормальных взаимодействий в эндокринной системе являются патологические процессы в самих эндокринных железах, вследствие прямого поражения одной или нескольких из них. В патологических условиях возможно несколько вариантов нарушения деятельности эндокринных желез:

1) не соответствующая потребностям организма чрезмерно высокая инкреция (гиперфункция);

2) не соответствующая потребностям организма чрезмерно низкая инкреция (гипофункция);

3) качественное нарушение гормонообразования в железе, качественное нарушение инкреции (дисфункция).

Ниже приведена классификация эндокринопатии.

1. По характеру изменения функции: гиперфункция, гипофункция, дисфункция, эндокринные кризы.

Дисфункция - нарушение соотношений между гормонами, выделяемыми одной и той же железой. Примером может служить нарушение соотношений между эстрогенами и прогестероном, считающееся важным фактором патогенеза фибромиомы матки.

Эндокринные кризы - острые проявления эндокринной патологии - могут быть гипер- и гипофункциональными (тиреотоксичекий криз, гипотиреоидная кома и др.).

2.По происхождению: первичные (развивающиеся в результате первичного повреждения ткани железы) и вторичные (развивающиеся в результате первичного повреждения гипоталамуса).

Железы внутренней секреции – специализированные органы, не имеющие выводных протоков и выделяющие секрет в кровь, церебральную жидкость, лимфу через межклеточные щели.

Эндокринные железы отличаются сложной морфологической структурой с хорошим кровоснабжением, расположены в различных частях организма. Особенностью сосудов, питающих железы, является их высокая проницаемость, что способствует легкому проникновению гормонов в межклеточные щели, и наоборот. Железы богаты рецепторами, иннервируются вегетативной нервной системой.

Различают две группы эндокринных желез:

1) осуществляющие внешнюю и внутреннюю секрецию со смешанной функцией, (т. е. это половые железы, поджелудочная железа);

2) осуществляющие только внутреннюю секрецию.

Эндокринные клетки также присутствуют в некоторых органах и тканях (почках, сердечной мышце, вегетативных ганглиях, образуя диффузную эндокринную систему).

Общей функцией для всех желез является выработка гормонов.

Эндокринная функция – сложноорганизованная система, состоящая из ряда взаимосвязанных и тонко сбалансированных компонентов. Эта система специфична и включает в себя:

1) синтез и секрецию гормонов;

2) транспорт гормонов в кровь;

3) метаболизм гормонов и их экскрецию;

4) взаимодействие гормона с тканями;

5) процессы регуляции функций железы.

Гормоны химические соединения, обладающие высокой биологической активностью и в малых количествах значительным физиологическим эффектом.

Гормоны транспортируются кровью к органам и тканям, при этом лишь небольшая их часть циркулирует в свободном активном виде. Основная часть находится в крови в связанной форме в виде обратимых комплексов с белками плазмы крови и форменными элементами. Эти две формы находятся в равновесии друг с другом, причем равновесие в состоянии покоя значительно сдвинуто в сторону обратимых комплексов. Их концентрация составляет 80 %, а иногда и более от суммарной концентрации данного гормона в крови. Образование комплекса гормонов с белками – спонтанный, неферментативный, обратимый процесс. Компоненты комплекса связаны между собой нековалентными, слабыми связями.

Гормоны, не связанные с транспортными белками крови, имеют прямой доступ к клеткам и тканям. Параллельно протекают два процесса: реализация гормонального эффекта и метаболическое расщепление гормонов. Метаболическая инактивация важна в поддержании гормонального гомеостаза. Гормональный катаболизм – механизм регуляции активности гормона в организме.

По химической природе гормоны разделены на три группы:

1) стероиды;

2) полипептиды и белки с наличием углеводного компонента и без него;

3) аминокислоты и их производные.

Для всех гормонов характерен относительно небольшой период полужизни – около 30 мин. Гормоны должны постоянно синтезироваться и секретироваться, действовать быстро и с большой скоростью инактивироваться. Только в этом случае они могут эффективно работать в качестве регуляторов.

Физиологическая роль желез внутренней секреции связана с их влиянием на механизмы регуляции и интеграции, адаптации, поддержания постоянства внутренней среды организма.

2. Свойства гормонов, механизм их действия

Выделяют три основных свойства гормонов:

1) дистантный характер действия (органы и системы, на которые действует гормон, расположены далеко от места его образования);

2) строгую специфичность действия (ответные реакции на действие гормона строго специфичны и не могут быть вызваны другими биологически активными агентами);

3) высокую биологическая активность (гормоны вырабатываются железами в малых количествах, эффективны в очень небольших концентрациях, небольшая часть гормонов циркулирует в крови в свободном активном состоянии).

Действие гормона на функции организма осуществляется двумя основными механизмами: через нервную систему и гуморально, непосредственно на органы и ткани.

Гормоны функционируют как химические посредники, переносящие информацию или сигнал в определенное место – клетку-мишень, которая имеет высокоспециализированный белковый рецептор, с которым связывается гормон.

По механизму воздействия клеток с гормонами гормоны делятся на два типа.

Первый тип (стероиды, тиреоидные гормоны) – гормоны относительно легко проникают внутрь клетки через плазматические мембраны и не требуют действия посредника (медиатора).

Второй тип – плохо проникают внутрь клетки, действуют с ее поверхности, требуют присутствия медиатора, их характерная особенность – быстровозникающие ответы.

В соответствии с двумя типами гормонов выделяют и два типа гормональной рецепции: внутриклеточный (рецепторный аппарат локализован внутри клетки), мембранный (контактный) – на ее наружной поверхности. Клеточные рецепторы – особые участки мембраны клетки, которые образуют с гормоном специфические комплексы. Рецепторы имеют определенные свойства , такие как:

1) высокое сродство к определенному гормону;

2) избирательность;

3) ограниченная емкость к гормону;

4) специфичность локализации в ткани.

Эти свойства характеризуют количественную и качественную избирательную фиксацию гормонов клеткой.

Связывание рецептором гормональных соединений является пусковым механизмом для образования и освобождения медиаторов внутри клетки.

Механизм действия гормонов с клеткой-мишенью происходит следующие этапы:

1) образование комплекса «гормон-рецептор» на поверхности мембраны;

2) активацию мембранной аденилциклазы;

3) образование цАМФ из АТФ у внутренней поверхности мембраны;

4) образование комплекса «цАМФ-рецептор»;

5) активацию каталитической протеинкиназы с диссоциацией фермента на отдельные единицы, что ведет к фосфорилированию белков, стимуляции процессов синтеза белка, РНК в ядре, распада гликогена;

6) инактивацию гормона, цАМФ и рецептора.

Действие гормона может осуществляться и более сложным путем при участии нервной системы. Гормоны воздействуют на интерорецепторы, которые обладают специфической чувствительностью (хеморецепторы стенок кровеносных сосудов). Это начало рефлекторной реакции, которая изменяет функциональное состояние нервных центров. Рефлекторные дуги замыкаются в различных отделах центральной нервной системы.

Выделяют четыре типа воздействия гормонов на организм:

1) метаболическое воздействие – влияние на обмен веществ;

2) морфогенетическое воздействие – стимуляция образования, дифференциации, роста и метаморфозы;

3) пусковое воздействие – влияние на деятельность эффекторов;

4) корригирующее воздействие – изменение интенсивности деятельности органов или всего организма.

3. Синтез, секреция и выделение гормонов из организма

Биосинтез гормонов – цепь биохимический реакций, которые формируют структуру гормональной молекулы. Эти реакции протекают спонтанно и генетически закреплены в соответствующих эндокринных клетках. Генетический контроль осуществляется либо на уровне образования мРНК (матричной РНК) самого гормона или его предшественников (если гормон – полипептид), либо на уровне образования мРНК белков ферментов, которые контролируют различные этапы образования гормона (если он – микромолекула).

В зависимости от природы синтезируемого гормона существуют два типа генетического контроля гормонального биогенеза:

1) прямой (синтез в полисомах предшественников большинства белково-пептидных гормонов), схема биосинтеза: «гены – мРНК – прогормоны – гормоны»;

2) опосредованный (внерибосомальный синтез стероидов, производных аминокислот и небольших пептидов), схема:

«гены – (мРНК) – ферменты – гормон».

На стадии превращения прогормона в гормон прямого синтеза часто подключается второй тип контроля.

Секреция гормонов – процесс освобождения гормонов из эндокринных клеток в межклеточные щели с дальнейшим их поступлением в кровь, лимфу. Секреция гормона строго специфична для каждой эндокринной железы. Секреторный процесс осуществляется как в покое, так и в условиях стимуляции. Секреция гормона происходит импульсивно, отдельными дискретными порциями. Импульсивный характер гормональной секреции объясняется циклическим характером процессов биосинтеза, депонирования и транспорта гормона.

Секреция и биосинтез гормонов тесно взаимосвязаны друг с другом. Эта связь зависит от химической природы гормона и особенностей механизма секреции. Выделяют три механизма секреции:

1) освобождение из клеточных секреторных гранул (секреция катехоламинов и белково-пептидных гормонов);

2) освобождение из белоксвязанной формы (секреция тропных гормонов);

3) относительно свободная диффузия через клеточные мембраны (секреция стероидов).

Степень связи синтеза и секреции гормонов возрастает от первого типа к третьему.

Гормоны, поступая в кровь, транспортируются к органам и тканям. Связанный с белками плазмы и форменными элементами гормон аккумулируется в кровяном русле, временно выключается из круга биологического действия и метаболических превращений. Неактивный гормон легко активируется и получает доступ к клеткам и тканям. Параллельно идут два процесса: реализация гормонального эффекта и метаболическая инактивация.

В процессе обмена гормоны изменяются функционально и структурно. Подавляющая часть гормонов метаболизируется, и лишь незначительная их часть (0,5-10 %) выводятся в неизмененном виде. Метаболическая инактивация наиболее интенсивно протекает в печени, тонком кишечнике и почках. Продукты гормонального метаболизма активно выводятся с мочой и желчью, желчные компоненты окончательно выводятся каловыми массами через кишечник. Небольшая часть гормональных метаболитов выводится с потом и слюной.

4. Регуляция деятельности эндокринных желез

Все процессы, происходящие в организме, имеют специфические механизмы регуляции. Один из уровней регуляции – внутриклеточный, действующий на уровне клетки. Как и многие многоступенчатые биохимические реакции, процессы деятельности эндокринных желез в той или иной степени саморегулируются по принципу обратной связи. Согласно этому принципу предыдущая стадия цепи реакций либо тормозит, либо усиливает последующие. Этот механизм регуляции имеет узкие пределы и в состоянии обеспечить мало изменяющийся начальный уровень деятельности желез.

Первостепенную роль в механизме регуляции имеет межклеточный системный механизм контроля, который ставит функциональную активность желез в зависимость от состояния всего организма. Системный механизм регуляции обусловливает главную физиологическую роль желез внутренней секреции – приведение в соответствие уровня и соотношения обменных процессов с потребностями всего организма.

Нарушение процессов регуляции приводит к патологии функций желез и всего организма в целом.

Регуляторные механизмы могут быть стимулирующими (облегчающими) и тормозящими.

Ведущее место в регуляции эндокринных желез принадлежит центральной нервной системе. Существует несколько механизмов регуляции:

1) нервный. Прямые нервные влияния играют определяющую роль в работе иннервируемых органов (мозгового слоя надпочечников, нейроэндокринных зон гипоталамуса и эпифиза);

2) нейроэндокринный, связанный с деятельностью гипофиза и гипоталамуса.

В гипоталамусе происходит трансформация нервного импульса в специфический эндокринный процесс, приводящий к синтезу гормона и его выделению в особых зонах нервно-сосудистого контакта. Выделяют два типа нейроэндокринных реакций:

а) образование и секрецию релизинг-факторов – главных регуляторов секреции гормонов гипофиза (гормоны образуются в мелкоклеточных ядрах подбугровой области, поступают в область срединного возвышения, где накапливаются и проникают в систему портальной циркуляции аденогипофиза и регулируют их функции);

б) образование нейрогипофизарных гормонов (гормоны сами образуются в крупноклеточных ядрах переднего гипоталамуса, спускаются в заднюю долю, где депонируются, оттуда поступают в общую систему циркуляции и действуют на периферические органы);

3) эндокринный (непосредственное влияние одних гормонов на биосинтез и секрецию других (тропные гормоны передней доли гипофиза, инсулин, соматостатин));

4) нейроэндокринный гуморальный. Осуществляется негормональными метаболитами, оказывающие регулирующее действие на железы (глюкозой, аминокислотами, ионами калия, натрия, простагландинами).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Поняти е о железах внутренней секреции

железа секреция диабет ребенок

Железами внутренней секреции, или эндокринными органами, называются железы, не имеющие выводных протоков. Они вырабатывают особые вещества - гормоны, поступающие непосредственно в кровь. Гормоны оказывают возбуждающее или угнетающее влияние на деятельность различных систем органов. Они влияют на обмен веществ, на деятельность сердечно-сосудистой системы, половой системы и функционирование других систем органов. Гормоны контролируют основные процессы жизнедеятельности организма на всех этапах его развития с момента зарождения. Они влияют на все виды обмена веществ в организме, активность генов, рост и дифференцировку тканей, формирование пола и размножение, адаптацию к меняющимся условиям среды, поддержание постоянства внутренней среды организма (гомеостаз), поведение и многие другие процессы. Совокупность регулирующего воздействия различных гормонов на функции организма называется гормональной регуляцией. У млекопитающих гормоны, как и выделяющие их железы внутренней секреции (эндокринные железы), составляют единую эндокринную систему. Она построена по иерархическому принципу и в целом контролируется нервной системой.

Гормоны служат химическими посредниками, переносящими соответствующую информацию (сигнал) в определенное место - клеткам соответствующей ткани-мишени; что обеспечивается наличием у этих клеток высокоспецифических рецепторов - особых белков, с которыми связывается гормон (у каждого гормона свой рецептор). Ответ клеток на действие гормонов различной химической природы осуществляется по-разному. Тиреоидные и стероидные гормоны проникают внутрь клетки и связываются со специфическими рецепторами с образованием гормоно-рецепторного комплекса. Этот комплекс взаимодействует непосредственно с геном, контролирующим синтез того или иного белка. Остальные гормоны взаимодействуют с рецепторами, находящимися на цитоплазматической мембране. После этого включается цепь реакций, приводящих к повышению внутри клетки концентрации так называемого вторичного посредника (например, ионов кальция или аденозинмонофосфата циклического), что, в свою очередь, сопровождается изменением активности определенных ферментов.

2. Нарушения деятельности желез внутренней секреции

Нарушения деятельности желез внутренней секреции сопровождается изменениями во всем организме. Повышение деятельности той или иной железы (гиперфункция) или, наоборот, ее понижение (гипофункция) могут вызвать тяжелые последствия в состоянии организма человека. Избыточное содержание какого-либо гормона в крови сопровождается остановкой его образования соответствующей железой, а недостаточное количество - усилением его выделения (механизм обратной связи). Избыточное образование или недостаток того или иного гормона в организме человека приводит к эндокринным заболеваниям. Например, следствием недостатка гормонов щитовидной железы в организме являются кретинизм, микседема, а их избытка - базедова болезнь и тиреотоксикоз; нарушение функций поджелудочной железы может сопровождаться дефицитом гормона инсулина и, как следствие, сахарным диабетом.

Биологическая активность гормонов очень велика: некоторые из них оказывают действие при разведении 1:1 000 000. Нарушения функций желёз играют большую роль в возникновении многих заболеваний и в первую очередь эндокринопатий.

3. Строение и фу нкции желез внутренней секреции

Гуморальная регуляция функций организма осуществляется с помощью химических веществ, вырабатываемых в различных органах и тканях, и кровью разносимых по всему организму. Существует ряд, желез внутренней секреции, которые вырабатывают вещества, специально предназначенные для регуляции - гормоны. Гормоны - это высокомолекулярные активные вещества. Ничтожное их количество оказывает мощное воздействие на деятельность определенных, органов.

Поджелудочная железа выполняет двоякую функцию. Одни ее клетки вырабатывают пищеварительный сок, который по выводным протокам поступает, в кишечник, другие клетки вырабатывают гормон - инсулин, поступающий прямо в кровь. Инсулин превращает избыток глюкозы в крови в гликоген и понижает уровень сахара в крови. Гормон глюкогон действует противоположно инсулину. Недостаток инсулина вызывает развитие сахарного диабета.

Щитовидная железа лежит поверх гортани. Ее гормоны, в том числе тироксин, регулируют обмен веществ. От их количества зависит уровень потребления кислорода всеми тканями тела. Недостаточная функция железы в детском возрасте приводит к развитию кретинизма (задерживается рост и умственное развитие), во взрослом возрасте - к заболеванию микседемой. Избыток гормонов у взрослых приводит к развитию зоба (базедовой болезни).

Надпочечники вырабатывают гормоны, которые регулируют белковый обмен, повышают устойчивость организма к неблагоприятным воздействиям среды, регулируют солевой обмен и др. В мозговом слое надпочечников вырабатывается гормон - адреналин, усиливающий сердечные сокращения и регулирующий углеводный обмен.

Гипофиз - нижний мозговой придаток, выделяет в кровь нейрогормоны, регулирующие рост организма, срункции надпочечников. Избыток соматотропного гормона приводит к гигантизму, недостаток - замедлению роста.

Гипоталамус вырабатывает нейрогормоны, регулирующие работу гипофиза. Половые железы (семенники и яичники) вырабатывают половые гомоны и образуют половые клетки. Мужские половые гормоны отвечают за развитие вторичных половых признаков: усов, бороды, характерного для мужчин телосложения и низкого голоса. Женские половые гормоны регулируют развитие женских вторичных признаков, управляют половыми циклами, протеканием беременности и родов.

Функция желез активируется на 3-4 неделе постнатальной жизни, достигая максимума в 6-10 лет, при этом наряду с прогрессивным изменением тканей встречаются и признаки регресса. Нарушение гомеостаза (относительного постоянства внутренней среды организма) вызывает непосредственно или рефлекторно изменение при этом реагируют чаще всего гипофиз, кора и мозговой слой надпочечников, щитовидная железа. Повышенная секреция гормонов этих желёз обусловливает возникновение ряда физиологических эффектов (усиление обмена веществ, изменение температуры тела, артериального давления и др.), направленных на приспособление (адаптацию) организма к изменившимся условиям окружающей среды. Расстройства могут обусловливаться, в первую очередь, нарушением функций эндокринных желёз - избыточное или недостаточное образование или выделение ими соответствующих гормонов (гипер- или гипосекреция и соответственно - гипер- и гипофункция), качественные изменения гормонов. Особая роль при дисфункции желёз принадлежит тем ферментам, которые принимают участие в синтезе и разрушении отдельных гормонов. Расстройства могут встречаться и при нормальной функции эндокринных желёз, когда действие гормонов изменяется в зависимости от изменений физико-химических условий среды в тканях и органах, в местах приложения действия гормонов. Значительную роль при этом играют ферменты.

4. Внутренняя секреция растущего организма

Период внутриутробного развития.

Вначале внутриутробное развитие находится под влиянием гормонов материнского организма. Большинство желез внутренней секреции формируется у плода лишь к 5-6 месяцам. Однако, по-видимому, щитовидная железа и гипофиз начинают вырабатывать гормоны уже к концу 3-го месяца. Рано начинает функционировать вилочковая железа, эпифиз и кора надпочечников. Количество образующихся гормонов, сначала очень небольшое, постепенно увеличивается. К 6 месяцам все железы внутренней секреции способны вырабатывать гормоны.

Внутренняя секреция у ребенка.

У новорожденного ребенка интенсивность деятельности отдельных желез внутренней секреции неодинакова. Сравнительно низка активность мозгового слоя над-почечников, который в этом возрасте» 15 чень невелик, так как основную массу надпочечников составляет их наружный слой, т.е. кора. Однако на протяжении 1-го года жизни мозговой слой надпочечников быстро растет, тогда как рост коркового слоя почти приостанавливается. Функция щитовидной железы усиливается к 3-4 месяцам жизни, достигая максимума к началу 2-го года жизни. Усиливается также активность вилочковои железыиэпифиз а. После 7-8 лет их активность начинает, снижаться. Обе доли мозго. вого придатка выделяют достаточное количество гормонов, однако соотношение отдельных гормонов в разные периоды жизни меняется в зависимости от потребностей организма.

Интенсивность выделения отдельных гормонов изменчива. Она в значительной мере зависит как от нервной системы, так и от взаимодействия желез внутренней секреции. Нередко усиленное выделение одного гормона влечет за собой увеличение или, наоборот, снижение образования гормонов, вырабатываемых другими железами.

Развитие половых признаков.

Пол будущего организма определяется в момент оплодотворения, т.е. слияния сперматозоида с яйцевой клеткой. Однако на ранней стадии эмбрионального развития зачаток половой железы еще не имеет никаких видимых признаков, позволяющих установить пол. У эмбриона одновременно начинают развиваться зачатки и мужской и женской половой железы. На третьей неделе появляются первые признаки половой дифференциации. Уже на этой ранней стадии формирование мужских и женских половых органов, т.е. первичных половых признаков, регулируется гормонами, образующимися в половых железах эмбриона. К 4-5-му месяцу они сильно увеличиваются в размере, а их структура свидетельствует об интенсивной функции. В дальнейшем семенники энергично растут в течение первого года внеутробного развития, а затем примерно до 9-10 лет почти не увеличиваются в размере. Яичники в первые месяцы внутриутробной жизни развиваются более медленно, чем семенники. Их рост достигает наибольшей интенсивности в течение последних двух месяцев до рождения и первого года после рождения, а затем резко замедляется, чтобы снова усилиться после 10 лет.

5. Профилактика, лечение и причины сахарного диабета у детей

Сахарный диабет - неоднородная группа метаболических расстройств, которая характеризуется хронической гипергликемией и изменением углеводного, белкового и жирового обмена вследствие нарушения секреции или действия инсулина.

Существует несколько типов сахарного диабета. Наиболее известны сахарный диабет типа 1 и сахарный диабет типа 2. Это заболевание может быть в любом возрасте, но в последние годы сахарный диабет все чаще появляется и у маленьких детей - одного, трех, пяти лет.

Во всем мире рост заболеваемости идет за счет детей младшего возраста. В целом по России нарастание заболеваемости происходит с востока на запад и с юга на север. Так, в Москве заболеваемость составляет 16 случаев на 100 тысяч детского населения в год; в Челябинской области - более 10 на 100 тысяч детского населения.

Причины сахарного диабета у детей

Это объясняется генетическими факторами, главным образом при сахарном диабете типа 2. Особая роль отводится факторам внешней среды - росту индустриализации, взрывному развитию промышленности, транспорта, усиленной миграции населения. Все это изменяет окружающую среду, меняются пищевые привычки, перемещаются инфекции во всем мире. Доказана ассоциация с факторами национального благосостояния, с изменением питания, с влиянием различных стрессов, с курением среди молодежи, особенно у беременных женщин, с увеличением перинатальной инфекции. Все эти факторы могут быть запускающим процессом в аутоиммунных реакциях у ребенка. Факторами риска развития сахарного диабета типа 2 в детском возрасте являются ожирение, низкий вес при рождении, клинические проявления инсулинорезистентности.

Клинические признаки у детей от года до трех лет могут появиться быстро, и через две недели у них развивается коматозное состояние. Очень часто они могут поступить в инфекционное отделение, гастроэнтерологическое или хирургическое отделение больниц. У дошкольников, младших школьников эти признаки появляются примерно через три месяца, а школьники и подростки часто поступают в эндокринологическое отделение через шесть месяцев.

При сахарном диабете типа 2 в большинстве случаев начало заболевания постепенное, без выраженных признаков. Коматозное состояние встречается редко.

Диагностика и признаки сахарного диабета

Родителям, воспитателям, учителям необходимо обращать внимание на поведение, эмоциональный настрой ребенка, его аппетит, успехи в жизни, учебе.

Лабораторные данные: уровень сахара в крови, моче.

В норме сахар крови у доношенных новорожденных составляет 2,78 - 4,4 ммоль/л; у дошкольников, школьников 3,3 - 5,0 ммоль/л.

Профилактика сахарного диабета у детей.

Рациональное питание. На первом году жизни - грудное вскармливание. Активный образ жизни, занятия спортом. Для уточнения типа сахарного диабета необходимо делать анализ крови на иммунореактивный инсулин (ИРИ) и С-пептид.

Размещено на Allbest.ru

Подобные документы

    Понятие о железах внутренней секреции, их строение и функции. Гормоны как химические посредники, переносящие соответствующую информацию клеткам. Нарушения деятельности эндокринных органов и возрастные изменения. Профилактика сахарного диабета у детей.

    контрольная работа , добавлен 16.12.2010

    Значение желез внутренней секреции в организме человека, функции вырабатываемых гормонов. Патологии, связанные с гормоном роста. Нарушения функционирования щитовидной железы. Понятие и назначение дезинфекции, ее методы, правила и основные способы.

    контрольная работа , добавлен 22.02.2012

    Железы внутренней секреции, их роль в организме. Щитовидная железа, строение и функциональные особенности. Предверно-улитковый орган, движение в локтевом суставе. Общий центр тяжести тела и его местоположение в организме человека. Понятие площади опоры.

    контрольная работа , добавлен 24.07.2009

    Нарушение внутренней секреции поджелудочной железы. Особенности симптомов сахарного диабета, случаи повышенного содержания инсулина в крови. Методы распознавания различных видов гипогликемии. Гипотезы причин повреждения работы поджелудочной железы.

    реферат , добавлен 28.04.2010

    Карликовость - клинический синдром, характеризующийся малым ростом; болезнь Книста как его разновидность. Сахарный диабет – эндокринное заболевание: характеристика и причины возникновения. Микседема, кретинизм и гигантизм: основные клинические признаки.

    презентация , добавлен 20.03.2012

    Значение костной системы в организме. Функциональные особенности щитовидной железы. Пищеварительная система, строение полости рта и слюнных желез, глотки, пищевода, желудка, отделы тонкой и толстой кишки. Регуляция функций желез внутренней секреции.

    реферат , добавлен 05.01.2015

    Железы внутренней, внешней и смешанной секреции. Поджелудочная железа: понятие, строение, внутрисекреторная функция. Корковое и мозговое вещество яичника. Яичко как мужская половая железа смешанной секреции. Интерстициальные эндокриноциты, клетки Лейдига.

    презентация , добавлен 22.01.2014

    Характеристика желез внутренней секреции и их физиология. Механизм действия гормонов и их свойства. Роль обратной связи в механизме регуляции в функционировании гипоталамуса, гипофиза, эпифиза и щитовидной железы. Сравнительная характеристика гормонов.

    реферат , добавлен 17.03.2011

    Инсулиннезависимый диабет или сахарный диабет II типа - метаболическое заболевание, характеризующееся хронической гипергликемией. Нарушение секреции инсулина или механизмов его взаимодействия с клетками тканей. Диагностика, клиническая картина и лечение.

    презентация , добавлен 29.03.2012

    Железы внутренней секреции. Главные особенности применения ингибиторов для выключения функции эндокринных желез, парабиоз. Механизм действия гормонов. Тироксин, трийодтиронин и тиреокальцитонин. Регуляция внутрисекреторной деятельности щитовидной железы.

Все железы внутренней секреции в целостном организме находятся в постоянном взаимодействии. Гормоны гипофиза регулируют работу щитовидной железы, поджелудочной, надпочечников, половых желез. Гормоны половых желез воздействуют на работу зобной железы, а гормоны зобной - на половые железы и т.д.

Взаимодействие проявляется и в том, что реакция того или иного органа нередко осуществляется только при последовательно воздействии ряда гормонов. Таковы. например, циклические изменения слизистой оболочки матки: каждый из гормонов может вызвать направленные изменения слизистой только в том случае, если предварительно она подвергалась воздействию какого-то другого определенного гормона. Железы внутренней секреции регулируют работу друг друга по принципу обратной связи. При этом если гормон какой-то железы усиливает работу другой железы, то последняя оказывает на первую тормозное действие, а это приводит к уменьшению возбуждающего влияния первой железы на вторую.

Действие различных гормонов желез может быть как синергичным, т.е. однонаправленным, так и антагонистичным, т.е. противоположно направленным. Противоположно действуют на углеводный обмен гормон надпочечников адреналин и гормон поджелудочной железы инсулин. Гормон щитовидной железы и адреналин действуют, наоборот, как синергисты. Взаимодействие может осуществляться и посредством нервной системы. Гормоны одних желез воздействуют на нервные центры, а импульсы, идущие от нервных центров, меняют характер деятельности других желез.

Нервная и гуморальная регуляция функций.

Существование организма в окружающей его внешней среде, так же как и его ответные реакции на самые разнообразные раздражения, обеспечиваются очень тонкой координацией деятельности нервной системы и желез внутренней секреции. Каждый орган, каждая система организма находится под воздействием нервных и гуморальных факторов.

К гуморальным факторам регуляции относят самые разнообразные вещества, находящиеся в крови и способные влиять на функцию различных органов. Так, в результате обменных процессов в тканях постоянно образуются биологические активные вещества (углекислота, гистамин, серотонин и др.), которые с кровью разносятся по организму и оказывают воздействия на все чувствительные к ним органы. К гуморальным факторам регуляции относятся и гормоны. Железы внутренней секреции, пересаженные в другой участок организма и лишенные всех нервных связей, продолжают функционировать. Однако это не означает, что и в естественных условиях они работают независимо от нервной системы. Нервная система может усилить или затормозить работу любой железы. Когда железа перестает получать импульсы от нервной системы, она теряет способность менять свою деятельность в соответствии с изменениями, происходящими во внешней и внутренней среде организма. До настоящего времени не во всех деталях выявлен механизм взаимодействия нервной системы и эндокринных желез. Но один из путей их взаимовлияния известен довольно хорошо. Имеется множество морфологических и физиологических доказательств наличия тесной связи между подбугровой областью - гипоталамусом и гипофизом. Гипоталамус связан афферентными путями с корой головного мозга, зрительными буграми, со средним мозгом, с подкорковыми ядрами, ядрами ретикулярной формации. Не менее многочисленны эфферентные пути гипоталамуса, по которым импульсы от него идут ко всем отделам центральной нервной системы.

В гипоталамусе есть клетки, которые чувствительны к изменениям состава крови - хеморецепторы - и к изменению осмотического давления - осморецепторы . Таким образом, гипоталамус, благодаря многочисленным нервным связям и наличию рецепторных клеток, является очень чувствительным образованием, чутко реагирующим на изменения внутренней и внешней среды организма. Гипоталамус примечателен еще и тем, что многие его клетки обладают способностью к нейросекреции , т.е. в них образуются биологически активные вещества - нейрогормоны .

Нейросекреторные клетки гипоталамуса имеют тело и отростки, число которых может быть различным. Секрет, который содержит гормоны полипептидной природы, собирается в канальцах эндоплазматической сети, оттуда он поступает в аппарат Гольджи и оформляется в виде секреторных гранул. Сформировавшиеся гранулы поступают в аксоны клеток, по которым перемещаются со скоростью 3 мм в сутки до их окончаний, где и накапливаются. За время перемещения по аксону происходит их окончательное созревание. Непосредственно перед выделением гормона гранулы теряют свою плотность и превращаются в пузырьки, очень напоминающие везикулы пресинаптических нервных окончаний. Отростки нейросекреторных клеток формируют гипоталамо-гипофизарный тракт - ножку гипофиза , по которой нейрогормоны поступают в гипофиз, изменяя активность его клеток. Нейрогормоны, воздействующие на переднюю долю гипофиза, называют релизинг-факторами.

Таким образом, гипоталамус улавливает самые разнообразные раздражения из внешней и внутренней среды организма и секреторная активность его нейронов изменяется. Под влиянием нейросекретов гипоталамуса меняется секреция гормонов гипофизом, что вызывает через другие эндокринные железы изменения всех функций организма.

Гормоны участвуют не только в конечном звене рефлекторной реакции, они могут служить причиной возникновения разнообразных рефлексов. Если изолировать от общего кровотока участок кровеносного сосуда, сохранив его нервные связи, и ввести в этот участок инсулин, то последний, раздражая рецепторы, рефлекторно вызывает снижение кровяного давления. Таким образом, гормоны могут изменить характер рефлекторной реакции путем воздействия на любое из звеньев рефлекторной дуги.

Некоторые медиаторы нервной системы по своей структуре сходны с теми или иными гормонами. Так, медиатором действия симпатической нервной системы является норадреналин - вещество той же природы, что и гормон адреналин, выделяемый надпочечниками. Действует ли на клетку адреналин, образовавшийся в надпочечниках, или норадреналин, выделившийся в окончаниях симпатического нерва, результат воздействия один и тот же: в мышечных волокнах сердца, сосудов возникает деполяризация постсинаптической мембраны, вследствие изменения ее проницаемости. Следовательно, в ряде случаев нервная система и гуморальные факторы оказывают свое регулирующее воздействие посредством одного и того же механизма. Сейчас доказано, что медиаторы возбуждения появляются еще в донервной стадии развития организма и влияют на формообразовательные процессы, выполняя функцию локальных гормонов.

Наряду со сходством имеется ряд отличий в нервной и гуморальной регуляции функций. Нервная система осуществляет быстрые непродолжительные реакции, гормоны действуют более медленно. Нервные импульсы всегда имеют точную "станцию назначения", гормоны влияют на многие чувствительные к нему органы. При этом реакция органа зависит не только от свойство гормона, но и от свойств воспринимающего органа. Так, например, структура гормона щитовидной железы оказывается одинаковой у животных, стоящих на разных ступенях эволюционного развития, но вызываемые им эффекты различны. В процессе эволюции произошло усложнение воспринимающих образований и реакция на тот же самый гормон оказалась иной.

Понравилась статья? Поделитесь ей