Контакты

Чем обусловлена кислая нейтральная щелочная среда раствора. Определение реакции среды растворов и их нейтрализация

Соли – это ионные соединения, при попадании в воду они диссоциируют на ионы. В водном растворе эти ионы ГИДРАТИРОВАНЫ – окружены молекулами воды.

Обнаружено, что водные растворы многих солей имеют не нейтральную среду, а либо слабокислую, либо щелочную.

Объяснение этого – взаимодействие ионов соли с водой. Этот процесс называется ГИДРОЛИЗОМ.

Катионы и анионы, образованные слабым основанием или слабой кислотой, взаимодействуют с водой, отрывая от нее Н или ОН.

Причина этого: образование БОЛЕЕ ПРОЧНОЙ связи, чем в самой воде.

По отношению к воде соли можно разделить на 4 группы:

1) Соль, образованная сильным основанием и сильной кислотой - НЕ ГИДРОЛИЗУЕТСЯ , в растворе только диссоциирует на ионы. Среда нейтральная.

ПРИМЕР: Не гидролизуются соли – NaCl, KNO3, RbBr, Cs2SO4, KClO3, и т. п. В растворе эти соли только

диссоциируют:

Cs2SO4 à 2 Cs++SO42 -

2) Соль, образованная сильным основанием и слабой кислотой

- гидролиз ПО АНИОНУ . Анион слабой кислоты отрывает от воды ионы водорода , связывает их. В растворе образуется избыток ионов ОН - - среда щелочная.

ПРИМЕР: Гидролизу по аниону подвергаются соли - Na2S, KF, K3PO4 , Na2CO3, Cs2SO3, KCN, KClO, и кислые соли этих кислот.

K 3 PO 4 соль, образованная слабой кислотой и сильным основанием. Гидролизуется фосфат-анион.

PO 4 3- + НОН НРО42-+ОН-

K 3 PO 4 + Н2О К2НРО4 + КОН

(это первая ступень гидролиза, остальные 2 идут в очень малой степени)

3) Соль, образованная слабым основанием и сильной кислотой - гидролиз ПО КАТИОНУ . Катион слабого основания отрывает от воды ион ОН-, связывает его. В растворе остаётся избыток ионов H+ - среда кислая.

ПРИМЕР: Гидролизу по катиону подвергаются соли - CuCl2, NH4Cl, Al(NO3)3, Cr2(SO4)3 .

Cu SO 4 – соль, образованная слабым основанием и сильной кислотой. Гидролизуется катион меди:

Cu +2 + НОН CuOH + + H +

2 CuSO 4 +2 H 2 O (CuOH )2 SO 4 + H 2 SO 4

4) Соль, образованная слабым основанием и слабой кислотой - гидролиз И ПО КАТИОНУ И ПО АНИОНУ.

Если какие-либо из продуктов выделяются в виде осадка или газа, то гидролиз необратимый , если оба продукта гидролиза остаются в растворе - гидролиз обратимый.

ПРИМЕР: Гидролизуются соли –

· Al2S3,Cr2S3(необратимо):

Al2S3 + H2O à Al(OH)3 ¯ + H2S ­

· NH4F, CH3COONH4(обратимо)

NH4F + H 2 O NH4OH + HF

Взаимный гидролиз двух солей.

Он происходит при попытке получить с помощью обменной реакции солей, которые в водном растворе полностью гидролизованы. При этом происходит взаимный гидролиз – т. е. катион металла связывает ОН-группы, а анион кислоты – Н+

1) Соли металлов со степенью окисления +3 и соли летучих кислот (карбонаты, сульфиды, сульфиты) – при их взаимном гидролизе образуется осадок гидроксида и газ:

2AlCl3 + 3K2S + 6H2O à 2Al(OH)3¯ + 3H2S + 6KCl

(Fe3+, Cr3+) (SO32-, CO32-) (SO2, CO2)

2) Соли металлов со степенью окисления +2 (кроме кальция, стронция и бария) и растворимые карбонаты также вместе гидролизуются, но при этом образуется осадок ОСНОВНОГО КАРБОНАТА металла:

2 CuCl2 + 2Na2CO3 + H2O à (CuOH)2CO3 + CO2 + 4 NaCl

(все 2+, кроме Са, Sr, Ba)

Характеристика процесса гидролиза:

1) Процесс гидролиза является обратимым , протекает не до конца, а только до момента РАВНОВЕСИЯ;

2) Процесс гидролиза – обратный для реакции НЕЙТРАЛИЗАЦИИ, следовательно, гидролиз - эндотермический процесс (протекает с поглощением теплоты).

KF + H2O ⇄ HF + KOH – Q

Какие факторы усиливают гидролиз?

1. Нагревание – при увеличении температуры равновесие смещается в сторону ЭНДОТЕРМИЧЕСКОЙ реакции – гидролиз усиливается;

2. Добавление воды – т. к. вода является исходным веществом в реакции гидролиза, то разбавление раствора усиливает гидролиз.

Как подавить (ослабить) процесс гидролиза?

Часто необходимо не допустить гидролиза. Для этого:

1. Раствор делают максимально концентрированным (уменьшают количество воды);

2. Для смещения равновесия влево добавляют один из продуктов гидролиза кислоту , если идёт гидролиз по катиону или щёлочь, если идёт гидролиз по аниону.

Пример: как подавить гидролиз хлорида алюминия ?

Хлорид алюминия AlCl 3 – это соль, образованная слабым основанием и сильной кислотой – гидролизуется по катиону:

Al +3 + HOH AlOH +2 + H +

Среда – кислая. Следовательно, для подавления гидролиза необходимо добавить еще кислоты. Кроме того, следует сделать раствор наиболее концентрированным.

Для того, чтобы понять, что такое гидролиз солей, вспомним для начала, как диссоциируют кислоты и щелочи.

Общим между всеми кислотами является то, что при их диссоциации обязательно образуются катионы водорода (Н +), при диссоциации же всех щелочей всегда образуются гидроксид-ионы (ОН −).

В связи с этим, если в растворе, по тем или иным причинам, больше ионов Н + говорят, что раствор имеет кислую реакцию среды, если ОН − — щелочную реакцию среды.

Если с кислотами и щелочами все понятно, то какая же реакция среды будет в растворах солей?

На первый взгляд, она всегда должна быть нейтральной. И правда же, откуда, например, в растворе сульфида натрия взяться избытку катионов водорода или гидроксид-ионов. Сам сульфид натрия при диссоциации не образует ионов ни одного, ни другого типа:

Na 2 S = 2Na + + S 2-

Тем не менее, если бы перед вами оказались, к примеру, водные растворы сульфида натрия, хлорида натрия, нитрата цинка и электронный pH-метр (цифровой прибор для определения кислотности среды) вы бы обнаружили необычное явление. Прибор показал бы вам, что рН раствора сульфида натрия больше 7, т.е. в нем явный избыток гидроксид-ионов. Среда раствора хлорида натрия оказалась бы нейтральной (pH = 7), а раствора Zn(NO 3) 2 кислой.

Единственное, что соответствует нашим ожиданиям – это среда раствора хлорида натрия. Она оказалась нейтральной, как и предполагалось.
Но откуда же взялся избыток гидроксид-ионов в растворе сульфида натрия, и катионов-водорода в растворе нитрата цинка?

Попробуем разобраться. Для этого нам нужно усвоить следующие теоретические моменты.

Любую соль можно представить как продукт взаимодействия кислоты и основания. Кислоты и основания делятся на сильные и слабые. Напомним, что сильными называют те кислоты, и основания, степень диссоциации, которых близка к 100%.

примечание: сернистую (H 2 SO 3) и фосфорную (H 3 PO 4) чаще относят к кислотам средней силы, но при рассмотрении заданий по гидролизу нужно относить их к слабым.

Кислотные остатки слабых кислот, способны обратимо взаимодействовать с молекулами воды, отрывая от них катионы водорода H + . Например, сульфид-ион, являясь кислотным остатком слабой сероводородной кислоты, взаимодействует с ней следующим образом:

S 2- + H 2 O ↔ HS − + OH −

HS − + H 2 O ↔ H 2 S + OH −

Как можно видеть, в результате такого взаимодействия образуется избыток гидроксид-ионов, отвечающий за щелочную реакцию среды. То есть кислотные остатки слабых кислот увеличивают щелочность среды. В случае растворов солей содержащих такие кислотные остатки говорят, что для них наблюдается гидролиз по аниону .

Кислотные остатки сильных кислот, в отличие от слабых, с водой не взаимодействуют. То есть они не оказывают влияния на pH водного раствора. Например, хлорид-ион, являясь кислотным остатком сильной соляной кислоты, с водой не реагирует:

То есть, хлорид-ионы, не влияют на pН раствора.

Из катионов металлов, так же с водой способны взаимодействовать только те, которым соответствуют слабые основания. Например, катион Zn 2+ , которому соответствует слабое основание гидроксид цинка. В водных растворах солей цинка протекают процессы:

Zn 2+ + H 2 O ↔ Zn(OH) + + H +

Zn(OH) + + H 2 O ↔ Zn(OH) + + H +

Как можно видеть из уравнений выше, в результате взаимодействия катионов цинка с водой, в растворе накапливаются катионы водорода, повышающие кислотность среды, то есть понижающие pH. Если в состав соли, входят катионы, которым соответствуют слабые основания, в этом случае говорят что соль гидролизуется по катиону .

Катионы металлов, которым соответствуют сильные основания, с водой не взаимодействуют. Например, катиону Na + соответствует сильное основание – гидроксид натрия. Поэтому ионы натрия с водой не реагируют и никак не влияют на pH раствора.

Таким образом, исходя из вышесказанного соли можно разделить на 4 типа, а именно, образованные:

1) сильным основанием и сильной кислотой,

Такие соли не содержат ни кислотных остатков, ни катионов металлов, взаимодействующих с водой, т.е. способных повлиять на pH водного раствора. Растворы таких солей имеют нейтральную реакцию среды. Про такие соли говорят, что они не подвергаются гидролизу .

Примеры: Ba(NO 3) 2 , KCl, Li 2 SO 4 и т.д.

2) сильным основанием и слабой кислотой

В растворах таких солей, с водой реагируют только кислотные остатки. Среда водных растворов таких солей щелочная, в отношении солей такого типа говорят, что они гидролизуются по аниону

Примеры: NaF, K 2 CO 3 , Li 2 S и т.д.

3) слабым основанием и сильной кислотой

У таких солей с водой реагируют катионы, а кислотные остатки не реагируют – гидролиз соли по катиону , среда кислая.

Примеры: Zn(NO 3) 2 , Fe 2 (SO 4) 3 , CuSO 4 и т.д.

4) слабым основанием и слабой кислотой.

С водой реагируют как катионы, так и анионы кислотных остатков. Гидролиз солей такого рода идет и по катиону, и по аниону или же. Также говорят про такие соли, что они подвергаются необратимому гидролизу .

Что же значит то, что они необратимо гидролизуются?

Поскольку в данном случае с водой реагируют и катионы металла (или NH 4 +) и анионы кислотного остатка, в раcтворе одновременно возникают и ионы H + , и ионы OH − , которые образуют крайне малодиссоциирующее вещество – воду (H 2 O).

Это, в свою очередь, приводит к тому, что соли образованные кислотными остатками слабых оснований и слабых кислот не могут быть получены обменными реакциями, а только твердофазным синтезом, либо и вовсе не могут быть получены. Например, при смешении раствора нитрата алюминия с раствором сульфида натрия, вместо ожидаемой реакции:

2Al(NO 3) 3 + 3Na 2 S = Al 2 S 3 + 6NaNO 3 (− так реакция не протекает!)

Наблюдается следующая реакция:

2Al(NO 3) 3 + 3Na 2 S + 6H 2 O= 2Al(OH) 3 ↓+ 3H 2 S + 6NaNO 3

Тем не менее, сульфид алюминия без проблем может быть получен сплавлением порошка алюминия с серой:

2Al + 3S = Al 2 S 3

При внесении сульфида алюминия в воду, он также как и при попытке его получения в водном растворе, подвергается необратимому гидролизу.

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 ↓ + 3H 2 S

Гидролиз – это взаимодействие веществ с водой, в результате которого изменяется среда раствора.

Катионы и анионы слабых электролитов способны взаимодействовать с водой с образованием устойчивых малодиссоциируемых соединений или ионов, в результате чего меняется среда раствора. Формулы воды в уравнениях гидролиза обычно записывают в виде Н‑ОН. При реакции с водой катионы слабых оснований отнимают от воды гидроксил ион, и в растворе образуется избыток Н + . Среда раствора становится кислотной. Анионы слабых кислот притягивают из воды Н + , и реакция среды становится щелочной.

В неорганической химии чаще всего приходится иметь дело с гидролизом солей, т.е. с обменным взаимодействием ионов соли с молекулами воды в процессе их растворения. Различают 4 варианта гидролиза.

1. Соль образована сильным основанием и сильной кислотой.

Такая соль гидролизу практически не подвергается. При этом равновесие диссоциации воды в присутствии ионов соли почти не нарушается, поэтому рН=7, среда нейтральная.

Na + + H 2 O Cl ‑ + H 2 O

2. Если соль образована катионом сильного основания и анионом слабой кислоты, то происходит гидролиз по аниону.

Na 2 CO 3 + HOH NaHCO 3 + NaOH

Так как в растворе накапливаются ионы ОН ‑ , то среда – щелочная, рН>7.

3. Если соль образована катионом слабого основания и анионом сильной кислоты, то гидролиз идет по катиону.

Cu 2+ + HOH CuOH + + H +

СuCl 2 + HOH CuOHCl + HCl

Так как в растворе накапливаются ионы Н + , то среда кислая, рН<7.

4. Соль, образованная катионом слабого основания и анионом слабой кислоты, подвергается гидролизу и по катиону и по аниону.

CH 3 COONH 4 + HOH NH 4 OH + CH 3 COOH

CH 3 COO ‑ +
+ HOH NH 4 OH + CH 3 COOH

Растворы таких солей имеют или слабокислую, или слабощелочную среду, т.е. величина рН близка к 7. Реакция среды зависит от соотношения констант диссоциации кислоты и основания. Гидролиз солей, образованных очень слабыми кислотой и основанием, является практически необратимым. Это, в основном, сульфиды и карбонаты алюминия, хрома, железа.

Al 2 S 3 + 3HOH 2Al(OH) 3 + 3H 2 S

При определении среды раствора солей необходимо учитывать, что среда раствора определяется сильным компонентом. Если соль образована кислотой, являющейся сильным электролитом, то среда раствора кислая. Если основание сильный электролит, то – щелочная.

Пример. Щелочную среду имеет раствор

1) Pb(NO 3) 2 ; 2) Na 2 CO 3 ; 3) NaCl; 4) NaNO 3

1) Pb(NO 3) 2 нитрат свинца(II). Соль образована слабым основанием и сильной кислотой , значит среда раствора кислая.

2) Na 2 CO 3 карбонат натрия. Соль образована сильным основанием и слабой кислотой, значит среда раствора щелочная.

3) NaCl; 4) NaNO 3 Соли образованы сильным основанием NaOH и сильными кислотами HCl и HNO 3 . Среда раствора нейтральная.

Правильный ответ 2) Na 2 CO 3

В растворы солей опустили индикаторную бумажку. В растворах NaCl и NaNO 3 она не изменила цвет, значит среда раствора нейтральная . В растворе Pb(NO 3) 2 окрасилась в красный цвет, среда раствора кислая. В растворе Na 2 СO 3 окрасилась в синий цвет, среда раствора щелочная.

Задачник по общей и неорганической химии

7. Водные растворы протолитов. 7.1. Вода. Нейтральная, кислая и щелочная среда. Сильные протолиты

Смотрите задания >>>

Теоретическая часть

Современной теорией кислот и оснований является протонная теория Бренстеда – Лаури , которая объясняет проявление веществами кислотной или основной функции тем, что они вступают в реакции протолиза – реакции обмена протонами (катионами водорода) Н + :

НА+Е А - +НЕ +

кислотаоснованиеоснование кислота

Согласно этой теории кислота – это протонсодержащее вещество НА, являющееся донором своего протона; основание – вещество Е, акцептирующее протон, отданный кислотой. В общем случае реагент – кислота НА и реагент – основание Е, а также продукт – основание А - и продукт – кислота НЕ + конкурируют между собой за обладание протоном, что приводит обратимую кислотно-основную реакцию к состоянию протолитического равновесия . Поэтому в системе присутствуют четыре вещества, составляющие две сопряженные пары «кислота – основание»: НА / А - и НЕ + /Е. Вещества, проявляющие кислотные или оснóвные свойства, называют протолитами .

7.1. Вода. Нейтральная, кислая и щелочная среда. Сильные протолиты

Наиболее распространенный на Земле жидкий растворитель – вода. Помимо молекул Н 2 О, в чистой воде содержатся гидроксид-ионы ОН - и катионы оксония Н 3 О + вследствие протекающей реакции автопротолиза воды:

Н 2 O + H 2 O OH − + Н 3 O

кислота основание основание кислота

Количественной характеристикой автопротолиза воды является ионное произведение воды:

K В = [Н 3 О + ][ ОН – ] = 1 . 10 –14 (25 ° С)

Следовательно, в чистой воде

[Н 3 О + ] = [ОН – ] =1 . 10 –7 моль/л (25 ° С)

Содержание катионов оксония и гидроксид-ионов выражают также через водородный показатель pH и гидроксильный показатель pOH :

pH = -lg ,pOH = -lg [ OH – ]

В чистой воде при 25 ° С pH = 7, pOH = 7, pH + pOH = 14.

В разбавленных (менее 0,1 моль/л) водных растворах веществ значение pH может быть равно, больше или меньше pH чистой воды. При pH = 7 среду водного раствора называют нейтральной, при pH < 7 – кислотной, при pH > 7 – щелочной. Значительное увеличение концентрации ио нов H 3 O + в воде (создание кислотной среды) достигается при необратимой реакции протолиза таких веществ, как хлороводород , хлорная и серная кислоты:

HCl +H 2 O=Cl – +H 3 O + ,pH < 7

HClO 4 + H 2 O=ClO 4 – +H 3 O + ,pH < 7

H 2 SO 4 + 2H 2 O=SO 4 2– +2H 3 O + ,pH < 7

Ионы Cl , ClO 4 , SO 4 2– , сопряженные с этими кислотами, основными свойствами в воде не обладают. Аналогичным образом ведут себя в водном растворе некоторые гидроанионы , например гидросульфат-ион:

HSO 4 – + H 2 O=SO 4 2– +H 3 O + ,pH < 7

В связи с необратимостью реакций протолиза , сам ион H 3 O + , вещества HCl , HClO 4 и H 2 SO 4 , подобные им по протолитическим свойствам HClO 3 , HBr , HBrO 3 , HI , HIO 3 , HNO 3 , HNCS , H 2 SeO 4 , HMnO 4 , ионы HSO 4 , HSeO 4 и некоторые другие в водном растворе считаются сильными кислотами . В разбавленном растворе сильной кислоты НА (т.е. при с НА менее 1 моль /л) концентрация катионов оксония и рН связаны с аналитической (по приготовлению) молярной концентрацией с НА следующим образом:

[ H 3 O + ] = с НА , pH = - lg [ H 3 O + ] = - lg с НА

Пример 1 . Определите водородный показатель рН в 0,006М растворе серной кислоты при 25 ° С.

Решение

рН = ?

с B = 0,006 моль/л

2 с B

H 2 SO 4 + 2H 2 O = SO 4 2– + 2H 3 O + , pH<7

pH = –lg = –lg (2 с B ) = –lg (2 ´ 0,006) = 1, 9 2

Ответ : 0,006М раствор H 2 SO 4 имеет рН 1, 9 2

Значительное увеличение концентрации ионов ОН - в воде (создание щелочной среды) достигается растворением и полной электролитической диссоциацией таких веществ, как гидроксиды калия и бария, называемых щелочами :

KOH = K + + ОН – ; Ва (ОН) 2 + 2ОН – , рН >7

Вещества КОН, Ва (ОН) 2 , NaOH и подобные им основные гидроксиды в твердом состоянии являются ионными кристаллами; при их электролитической диссоциации в водном растворе образуются ионы ОН – (это сильное основание) , а также ионы K + , Ва 2+ , Na + и др., которые кислотными свойствами в воде не обладают. При данной аналитической концентрации щелочи МОН в разбавленном растворе (с B менее 0,1 моль/л) имеем:

[ОН – ] = с M OH ; pH = 14 – рОН = 14 + lg [ОН – ] = 14 + lg с MOH

Пример 2 . Определите рН в 0,012М растворе гидроксида бария при 25 ° С.

рН = ?

с B = 0,012 моль/л

[ОН – ] = 2с B

Ва (ОН) 2 = Ва 2+ + 2ОН – , pH >7

pH = 14 – pOH = 14 + lg [ОН – ] = 14 + lg (2с в) =

14+ lg (2 . 0,012)=12,38


Ответ
: 0,012М раствор Ва (ОН) 2 имеет pH 12,38

Урок, проводимый с использованием тетради для практических работ И.И.Новошинского, Н.С.Новошинской к учебнику Химия 8 класс в МОУ “СОШ №11” г. Северодвинска Архангельской области учителем химии О.А.Олькиной в 8 классах (на параллели).

Цель урока: Формирование, закрепление и контроль умений учащихся определять реакцию среды растворов с помощью различных индикаторов, в том числе природных, используя тетрадь для практических работ И.И.Новошинского, Н.С.Новошинской к учебнику Химия 8 класс.

Задачи урока:

  1. Образовательные. Закрепить следующие понятия индикаторы, реакция среды (типы) , pH, фильтрат, фильтрование на основе выполнения заданий практической работы. Проверить знания учащихся, которые отражают зависимость “ раствор вещества (формула) – значение pH (числовое значение) – реакция среды”. Рассказать учащимся о способах снижения кислотности почв Архангельской области.
  2. Развивающие. Способствовать развитию логического мышления учащихся на основании анализа результатов, полученные в ходе практической работы, их обобщения, а также умения делать вывод. Подтвердить правило: практика доказывает теорию или опровергает ее. Продолжить формирование эстетических качеств личность учащихся на основе разнообразного спектра представленных растворов, а также поддержать интерес ребят к изучаемому предмету “Химия”.
  3. Воспитывающие. Продолжить формировать умения учащихся выполнять задания практической работы, придерживаясь, правил по охране труда и технике безопасности, в том числе правильно выполнять процессы фильтрования, нагревания.

Практическая работа № 6 “Определение pH среды”.

Цель для учащихся: Научится определять реакцию среды растворов разных объектов (кислот, щелочей, солей, почвенного раствора, некоторых растворов и соков), а также изучить растительные объекты как природные индикаторы.

Оборудование и реактивы: штатив с пробирками, пробка, стеклянная палочка, штатив с кольцом, фильтровальная бумага, ножницы, химическая воронка, стаканы, фарфоровая ступка с пестиком, мелкая терка, чистый песок, универсальная индикаторная бумага, испытуемый раствор, почва, кипяченая вода, плоды, ягоды и другой растительный материал, раствор гидроксида натрия и серной кислоты, хлорида натрия.

Ход урока

Ребята! Мы с вами уже познакомились с такими понятиями как реакция среды водных растворов, а также индикаторы.

Какие типы реакции среды водных растворов вы знаете?

  • нейтральная, щелочная и кислотная.

Что такое индикаторы?

  • вещества, с помощью которых можно определить реакцию среды.

Какие индикаторы вам известны?

  • в растворах: фенолфталеин, лакмус, метиловый оранжевый.
  • сухие: универсальная индикаторная бумага, лакмусовая бумага, метилоранжевая бумага

Какими способами можно определить реакцию среды водных растворов?

  • влажным и сухим.

Что такое pH среды?

  • водородный показатель ионов водорода в растворе(pH=– lg )

Давайте вспомним, какой ученый ввел понятие pH среды?

  • Датский химик Сёренсен.

Молодцы!!! Теперь откройте тетрадь для практических работ на с.21 и прочитайте задание №1 .

Задание №1.Определите pH раствора при помощи универсального индикатора.

Вспомним правила при работе с кислотами и щелочами!

Выполните опыт из задания №1.

Сделайте вывод. Таким образом, если раствор имеет pH = 7 среда нейтральная, при pH < 7 среда кислотная, при pH > 7 среда щелочная.

Задание №2.Получите почвенный раствор и определите его pH при помощи универсального индикатора.

Прочитайте задание на с.21-с.22, выполните задание по плану, результаты занесите в таблицу.

Вспомним правилами безопасности при работе с нагревательными приборами (спиртовкой).

Что такое фильтрование?

  • процесс разделение смеси, который основан на различной пропускной способности пористого материала – фильтрата по отношению к составляющим смесь частицам.

Что такое фильтрат?

  • это прозрачный раствор, получаемый после фильтрования.

Результаты оформите в виде таблицы.

Какая реакция среды почвенного раствора?

  • Кислая

Что необходимо сделать, чтобы повысить качество почвы в нашем регионе?

  • CaCO 3 + H 2 O+CO 2 = Ca(HCO 3) 2

Внесение удобрений, которые имеют щелочную реакцию среды: молотый известняк и других карбонатных минералов: мела, доломита. В Пинежском районе Архангельской области есть залежи такого минерала, как известняк, вблизи карстовых пещер, поэтому он доступен.

Сделайте вывод. Реакция среды полученного почвенного раствора pH=4,слабокислая, следовательно, для повышения качества почвы необходимо известкование.

Задание №3. Определите pH некоторых растворов и соков при помощи универсального индикатора.

Прочитайте задание на с.22, выполните задание по алгоритму, результаты занесите в таблицу.

Источник сока

Источник сока

Картофель

Силикатный клей

Капуста свежая

Столовый уксус

Капуста квашеная

Раствор питьевой соды

Апельсин

Свекла свежая

Свекла вареная

Сделайте вывод. Таким образом, разные натуральные объекты имеют разные значения pH: pH 1?7– среда кислотная (лимон, клюква, апельсин, помидор, свекла, киви, яблоко, банан, чай, картофель, капуста квашеная, кофе, силикатный клей).

pH 7?14среда щелочная(капуста свежая, раствор питьевой соды).

pH = 7 среда нейтральная(хурма, огурец, молоко).

Задание №4. Изучите растительные индикаторы.

Какие растительные объекты могут выступать в качестве индикаторов?

  • ягоды: соки, лепестки цветов: вытяжки, соки овощей: корнеплодов, листьев.
  • вещества, которые могут изменять окраску раствора в разных средах.

Прочитайте задание на с.23 и выполните его по плану.

Результаты оформите в таблицу.

Растительный материал (природные индикаторы)

Цвет раствора природного индикатора

Кислотная среда

Естественный цвет раствора (нейтральная среда)

Щелочная среда

Клюква (сок)

фиолетовый

Клубника (сок)

оранжевый

персиково – розовый

Черника (сок)

красно-фиолетовый

сине – фиолетовый

Черная смородина (сок)

красно-фиолетовый

сине – фиолетовый

Сделайте вывод. Таким образом, в зависимости от pH среды природные индикаторы: клюква (сок), клубника (сок), черника (сок), черная смородина (сок) приобретают следующие цвета: в кислой среде – красный и оранжевый цвет, в нейтральной – красный, персиково – розовый и фиолетовый цвета, в щелочной среде от розового через сине – фиолетовый до фиолетового цвета.

Следовательно, по интенсивности окраски природного индикатора можно судить по реакции среды того или иного раствора.

По окончании работы приведите в порядок рабочее место.

Ребята! Сегодня был очень необычный урок! Вам понравился?! Можно ли использовать сведения, полученные на данном уроке в повседневной жизни?

Сейчас выполните задание, которое приведено в ваших тетрадях для практических работ.

Задание для контроля. Распределите вещества, формулы которых приведены ниже, по группам в зависимости от pH их растворов: HCl, H 2 O, H 2 SO 4 , Ca (OH) 2 , NaCl, NaOH, KNO 3 , H 3 PO 4 , KOH.

pH 17– среда (кислотная) ,имеют растворы (HCl,H 3 PO 4 ,H 2 SO 4) .

pH 714 среда(щелочная), имеют растворы (Ca(OH) 2 , KOH, NaOH).

pH = 7 среда (нейтральная), имеют растворы (NaCl, H 2 O,KNO 3).

Оценка за работу_______________

Понравилась статья? Поделитесь ей