Контакты

Замечательные точки треугольника не изучаемые в школе. Проект "замечательные точки треугольника"

© Кугушева Наталья Львовна, 2009 Геометрия, 8 класс ТРЕУГОЛЬНИКА ЧЕТЫРЕ ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ

Точка пересечения медиан треугольника Точка пересечения биссектрис треугольника Точка пересечения высот треугольника Точка пересечения серединных перпендикуляров треугольника

Медианой (BD) треугольника называется отрезок, который соединяет вершину треугольника с серединой противолежащей стороны. А В С D Медиана

Медианы треугольника пересекаются в одной точке (центре тяжести треугольника) и делятся этой точкой в отношении 2: 1, считая от вершины. АМ: МА 1 = ВМ: МВ 1 = СМ:МС 1 = 2:1. А А 1 В В 1 М С С 1

Биссектрисой (А D) треугольника называется отрезок биссектрисы внутреннего угла треугольника.

Каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон. Обратно: каждая точка, лежащая внутри угла и равноудалённая от сторон угла, лежит на его биссектрисе. А М В С

Все биссектрисы треугольника пересекаются в одной точке– центре вписанной в треугольник окружности. С В 1 М А В А 1 С 1 О Радиус окружности (ОМ) – перпендикуляр, опущенный из центра (т.О) на сторону треугольника

ВЫСОТА Высотой (С D) треугольника называется отрезок перпендикуляра, опущенного из вершины треугольника на прямую, содержащую противолежащую сторону. A B C D

Высоты треугольника (или их продолжения) пересекаются в одной точке. А А 1 В В 1 С С 1

СЕРЕДИННЫЙ ПЕРПЕНДИКУЛЯР Серединным перпендикуляром (DF) называется прямая, перпендикулярная стороне треугольника и делящая её пополам. А D F B C

А М В m O Каждая точка серединного перпендикуляра (m) к отрезку равноудалена от концов этого отрезка. Обратно: каждая точка, равноудалённая от концов отрезка, лежит на серединном перпендикуляре к нему.

Все серединные перпендикуляры сторон треугольника пересекаются в одной точке– центре описанной около треугольника окружности. А В С О Радиусом описанной окружности является расстояние от центра окружности до любой вершины треугольника (ОА). m n p

Задания для учащихся Постройте с помощью циркуля и линейки окружность, вписанную в тупоугольный треугольник. Для этого: Постройте биссектрисы в тупоугольном треугольнике с помощью циркуля и линейки. Точка пересечения биссектрис– центр окружности. Постройте радиус окружности: перпендикуляр из центра окружности на сторону треугольника. Постройте окружность, вписанную в треугольник.

2. Постройте с помощью циркуля и линейки окружность, описанную около тупоугольного треугольника. Для этого: Постройте серединные перпендикуляры к сторонам тупоугольного треугольника. Точка пересечения этих перпендикуляров– центр описанной окружности. Радиус окружности– расстояние от центра до любой вершины треугольника. Постройте окружность, описанную около треугольника.

Докажем сначала теорему о биссектрисе угла.

Теорема

Доказательство

1) Возьмём произвольную точку М на биссектрисе угла ВАС, проведём перпендикуляры МК и ML к прямым АВ и АС и докажем, что MK = ML (рис. 224). Рассмотрим прямоугольные треугольники AM К и AML. Они равны по гипотенузе и острому углу (AM - общая гипотенуза, ∠1 = ∠2 по условию). Следовательно, MK = ML.

2) Пусть точка М лежит внутри угла ВАС и равноудалена от его сторон АВ и АС. Докажем, что луч AM - биссектриса угла ВАС (см. рис. 224). Проведём перпендикуляры МК и ML к прямым АВ и АС. Прямоугольные треугольники АМК и AML равны по гипотенузе и катету (AM - общая гипотенуза, МК = ML по условию). Следовательно, ∠1 = ∠2. Но это и означает, что луч AM - биссектриса угла ВАС. Теорема доказана.


Рис. 224

Следствие 1

Следствие 2

В самом деле, обозначим буквой О точку пересечения биссектрис АА 1 и ВВ 1 треугольника АВС и проведём из этой точки перпендикуляры OK, OL и ОМ соответственно к прямым АВ, ВС и СА (рис. 225). По доказанной теореме ОК = ОМ и OK = OL. Поэтому ОМ = OL, т. е. точка О равноудалена от сторон угла АСВ и, значит, лежит на биссектрисе СС 1 этого угла. Следовательно, все три биссектрисы треугольника АВС пересекаются в точке О, что и требовалось доказать.


Рис. 225

Свойства серединного перпендикуляра к отрезку

Серединным перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярная к нему.


Рис. 226

Докажем теорему о серединном перпендикуляре к отрезку.

Теорема

Доказательство

Пусть прямая m - серединный перпендикуляр к отрезку АВ, точка О - середина этого отрезка (рис. 227, а).


Рис. 227

1) Рассмотрим произвольную точку М прямой m и докажем, что AM = ВМ. Если точка M совпадает с точкой О, то это равенство верно, так как О - середина отрезка АВ. Пусть M и О различные точки. Прямоугольные треугольники ОAM и ОВМ равны по двум катетам (ОА = ОВ, ОМ - общий катет), поэтому AM = ВМ.

2) Рассмотрим произвольную точку N, равноудалённую от концов отрезка АВ, и докажем, что точка N лежит на прямой m. Если N - точка прямой АВ, то она совпадает с серединой О отрезка АВ и потому лежит на прямой m. Если же точка N не лежит на прямой АВ, то треугольник ANB равнобедренный, так как AN = BN (рис. 227, б). Отрезок NO - медиана этого треугольника, а значит, и высота. Таким образом, NO ⊥ АВ, поэтому прямые ON и m совпадают, т. е. N - точка прямой m. Теорема доказана.

Следствие 1

Следствие 2

Для доказательства этого утверждения рассмотрим серединные перпендикуляры m и n к сторонам АВ и ВС треугольника АВС (рис. 228). Эти прямые пересекаются в некоторой точке О. В самом деле, если предположить противное, т. е. что m || n, то прямая ВА, будучи перпендикулярной к прямой m, была бы перпендикулярна и к параллельной ей прямой n, а тогда через точку В проходили бы две прямые ВА и ВС, перпендикулярные к прямой n, что невозможно.


Рис. 228

По доказанной теореме ОВ = ОА и ОВ = ОС. Поэтому ОА = ОС, т. е. точка О равноудалена от концов отрезка АС и, значит, лежит на серединном перпендикуляре р к этому отрезку. Следовательно, все три серединных перпендикуляра m, n и р к сторонам треугольника АВС пересекаются в точке О.

Теорема о пересечении высот треугольника

Мы доказали, что биссектрисы треугольника пересекаются в одной точке, серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Ранее было доказано, что медианы треугольника пересекаются в одной точке (п. 64). Оказывается, аналогичным свойством обладают и высоты треугольника.

Теорема

Доказательство

Рассмотрим произвольный треугольник АВС и докажем, что прямые АА 1 ВВ 1 и СС 1 содержащие его высоты, пересекаются в одной точке (рис. 229).


Рис. 229

Проведём через каждую вершину треугольника АВС прямую, параллельную противоположной стороне. Получим треугольник А 2 В 2 С 2 . Точки А, В и С являются серединами сторон этого треугольника. Действительно, АВ = А 2 С и АВ = СВ 2 как противоположные стороны параллелограммов АВА 2 С и АВСВ 2 , поэтому А 2 С = СВ 2 . Аналогично С 2 А = АВ 2 и С 2 В = ВА 2 . Кроме того, как следует из построения, СС 1 ⊥ А 2 В 2 , АА 1 ⊥ В 2 С 2 и ВВ 1 ⊥ А 2 С 2 . Таким образом, прямые АА 1 , ВВ 1 и СС 1 являются серединными перпендикулярами к сторонам треугольника А 2 В 2 С 2 . Следовательно, оНи пересекаются в одной точке. Теорема доказана.

Итак, с каждым треугольником связаны четыре точки: точка пересечения медиан, точка пересечения биссектрис, точка пересечения серединных перпендикуляров к сторонам и точка пересечения высот (или их продолжений). Эти четыре точки называются замечательными точками треугольника .

Задачи

674. Из точки М биссектрисы неразвёрнутого угла О проведены перпендикуляры МА и МВ к сторонам этого угла. Докажите, что АВ ⊥ ОМ.

675. Стороны угла О касаются каждой из двух окружностей, имеющих общую касательную в точке А. Докажите, что центры этих окружностей лежат на прямой О А.

676. Стороны угла А касаются окружности с центром О радиуса r. Найдите: а) ОА, если r = 5 см, ∠A = 60°; б) г, если ОА = 14 дм, ∠A = 90°.

677. Биссектрисы внешних углов при вершинах В и С треугольника АВС пересекаются в точке О. Докажите, что точка О является центром окружности, касающейся прямых АВ, ВС, АС.

678. Биссектрисы АА 1 и ВВ 1 треугольника АВС пересекаются в точке М. Найдите углы ACM и ВСМ, если: a) ∠AMB = 136°; б) ∠AMB = 111°.

679. Серединный перпендикуляр к стороне ВС треугольника АВС пересекает сторону АС в точке D. Найдите: a) AD и CD, если BD = 5 см, Ас = 8,5см; б) АС, если BD = 11,4 см, AD = 3,2 см.

680. Серединные перпендикуляры к сторонам АВ и АС треугольника АВС пересекаются в точке D стороны ВС. Докажите, что: а) точка D - середина стороны ВС; б) ∠A - ∠B + ∠C.

681. Серединный перпендикуляр к стороне АВ равнобедренного треугольника АВС пересекает сторону ВС в точке Е. Найдите основание АС, если периметр треугольника АЕС равен 27 см, а АВ = 18 см.

682. Равнобедренные треугольники АВС и ABD имеют общее основание АВ. Докажите, что прямая CD проходит через середину отрезка АВ.

683. Докажите, что если в треугольнике АВС стороны АВ и АС не равны, то медиана AM треугольника не является высотой.

684. Биссектрисы углов при основании АВ равнобедренного треугольника АВС пересекаются в точке М. Докажите, что прямая СМ перпендикулярна к прямой АВ.

685. Высоты АА 1 и ВВ 1 равнобедренного треугольника АВС, проведённые к боковым сторонам, пересекаются в точке М. Докажите, что прямая МС - серединный перпендикуляр к отрезку АВ.

686. Постройте серединный перпендикуляр к данному отрезку.

Решение

Пусть АВ - данный отрезок. Построим две окружности с центрами в точках А и В радиуса АВ (рис. 230). Эти окружности пересекаются в двух точках М 1 и М 2 . Отрезки АМ 1 , AM 2 , ВМ 1 , ВМ 2 равны друг другу как радиусы этих окружностей.


Рис. 230

Проведём прямую М 1 М 2 . Она является искомым серединным перпендикуляром к отрезку АВ. В самом деле, точки М 1 и М 2 равноудалены от концов отрезка АВ, поэтому они лежат на серединном перпендикуляре к этому отрезку. Значит, прямая М 1 М 2 и есть серединный перпендикуляр к отрезку АВ.

687. Даны прямая а и две точки А и В, лежащие по одну сторону от этой прямой. На прямой а постройте точку М, равноудалённую от точек А к В.

688. Даны угол и отрезок. Постройте точку, лежащую внутри данного угла, равноудалённую от его сторон и равноудалённую от концов данного отрезка.

Ответы к задачам

    674. Указание. Сначала доказать, что треугольник АОВ равнобедренный.

    676. а) 10 см; б) 7√2 дм.

    678. а) 46° и 46°; б) 21° и 21°.

    679. a) АВ = 3,5 см, CD = 5 см; б) АС = 14,6 см.

    683. Указание. Воспользоваться методом доказательства от противного.

    687. Указание. Воспользоваться теоремой п. 75.

    688. Указание. Учесть, что искомая точка лежит на биссектрисе данного угла.

1 То есть равноудалена от прямых, содержащих стороны угла.

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Магнитогорский государственный университет»

Физико-математический факультет

Кафедра алгебры и геометрии


Курсовая работа

Замечательные точки треугольника


Выполнила: студентка 41 группы

Вахрамеева А.М

Научный руководитель

Великих А.С


Магнитогорск 2014

Введение


Исторически геометрия начиналась с треугольника, поэтому вот уже два с половиной тысячелетия треугольник является как бы символом геометрии; но он не только символ, он - атом геометрии.

Почему именно треугольник можно считать атомом геометрии? Потому что предшествующие понятия - точка, прямая и угол - это неясные и неосязаемые абстракции вместе со связанным с ними набором теорем и задач. Поэтому сегодня школьная геометрия только тогда может стать интересной и содержательной, только тогда может стать собственно геометрией, когда в ней появляется глубокое и всестороннее изучение треугольника.

Удивительно, но треугольник, несмотря на свою кажущуюся простоту, является неисчерпаемым объектом изучения - никто даже в наше время не осмелится сказать, что изучил и знает все свойства треугольника.

Значит, изучение школьной геометрии не может осуществляться без глубокого изучения геометрии треугольника; ввиду многообразия треугольника как объекта изучения - а, значит, и источника различных методик его изучения - необходимо подбирать и разрабатывать материал для изучения геометрии замечательных точек треугольника. Причем при подборе этого материала не следует ограничиваться только лишь замечательными точками, предусмотренными в школьной программе Государственным образовательным стандартом, такими как центр вписанной окружности (точка пересечения биссектрис), центр описанной окружности (точка пересечения серединных перпендикуляров), точка пересечения медиан, точка пересечения высот. Но для глубокого проникновения в природу треугольника и постижения его неисчерпаемости необходимо иметь представления как можно о большем числе замечательных точек треугольника. Помимо неисчерпаемости треугольника как геометрического объекта, необходимо отметить удивительнейшее свойство треугольника как объекта изучения: изучение геометрии треугольника можно начинать с изучения любого его свойства, взяв его за основу; затем методику изучения треугольника можно построить так, чтобы на эту основу нанизывать все остальные свойства треугольника. Другими словами, с чего бы ни начинать изучение треугольника, всегда можно дойти до любых глубин этой удивительной фигуры. Но тогда - как вариант - можно начинать изучение треугольника с изучения его замечательных точек.

Цель курсовой работы состоит в изучении замечательных точек треугольника. Для достижения поставленной цели необходимо решить следующие задачи:

·Изучить понятия биссектрисы, медианы, высоты, серединного перпендикуляра и их свойства.

·Рассмотреть точку Жергонна, окружность Эйлера и прямую Эйлера, не изучаемые в школе.


ГЛАВА 1. Биссектриса треугольника, центр вписанной окружности треугольника. Свойства биссектрисы треугольника. Точка Жергонна


1 Центр вписанной окружности треугольника


Замечательные точки треугольника - точки, местоположение которых однозначно определяется треугольником и не зависит от того, в каком порядке берутся стороны и вершины треугольника.

Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противоположной стороне.

Теорема. Каждая точка биссектрисы неразвернутого угла равноудалена (т.е. равноудалена от прямых, содержащих стороны треугольника) от его сторон. Обратно: каждая точка, лежащая внутри угла и равноудаленная от сторон угла, лежит на его биссектрисе.

Доказательство. 1) Возьмем произвольную точку М на биссектрисе угла ВАС, проведем перпендикуляры МК и МL к прямым АВ и АС и докажем, что МК=МL. Рассмотрим прямоугольные треугольники ?АМК и ?АМL. Они равны по гипотенузе и острому углу (АМ - общая гипотенуза, 1 = 2 по условию). Следовательно, МК=МL.

) Пусть точка М лежит внутри ВАС и равноудалена от его сторон АВ и АС. Докажем, что луч АМ - биссектриса ВАС. Проведем перпендикуляры МК и МL к прямым АВ и АС. Прямоугольные треугольники АКМ и АLM равны по гипотенузе и катету (АМ - общая гипотенуза, МК=МL по условию). Следовательно, 1 = 2. Но это и означает, что луч АМ - биссектриса ВАС. Теорема доказана.

Следствие. Биссектрисы треугольника пересекаются в одной точке, (центр вписанной окружности, и центр).

Обозначим буквой О точку пересечения биссектрис АА1 и ВВ1 треугольника АВС и проведем из этой точки перпендикуляры ОК, ОL и ОM соответственно к прямым АВ, ВС и СА. По теореме (Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон. Обратно: каждая точка, лежащая внутри угла и равноудаленная от сторон угла, лежит на его биссектрисе) мы говорим о том, что ОК = ОМ и ОК = OL. Поэтому OM = OL, т е точка O равноудалена от сторон АСВ и, значит лежит на биссектрисе СС1 этого угла. Следовательно, все три биссектрисы ?АВС пересекаются в точке О, что и требовалось доказать.

окружность биссектриса треугольник прямая

1.2 Свойства биссектрисы треугольника


Биссектриса BD (рис. 1.1) любого угла ?ABC делит противоположную сторону на части AD и CD, пропорциональные прилежащим сторонам треугольника.

Требуется доказать, что если ABD = DBC, то AD: DC =АВ: ВС.



Проведём СЕ || BD до пересечения в точке Е с продолжением стороны АВ. Тогда, согласно теореме о пропорциональности отрезков, образующихся на прямых, пересечённых несколькими параллельными прямыми, будем иметь пропорцию: AD: DC = АВ: BE. Чтобы от этой пропорции перейти к той, которую требуется доказать, достаточно обнаружить, что ВЕ = ВС, т. е. что ?ВСЕ равнобедренный. В этом треугольнике Е =ABD (как углы соответственные при параллельных прямых) и ВСЕ = DBC (как углы накрест лежащие при тех же параллельных прямых).

Но ABD = DBC по условию; значит, Е = ВСЕ, а потому равны и стороны BE и ВС, лежащие против равных углов.

Теперь, заменив в написанной выше пропорции BE на ВС, получим ту пропорцию, которую требуется доказать.

20 Биссектрисы внутреннего и смежного с ним угла треугольника перпендикулярны.



Доказательство. Пусть BD - биссектриса ABC (рис.1.2), а BE - биссектриса смежного с указанным внутренним углом внешнего CBF, ?ABC. Тогда если обозначить ABD = DBC = ?, CBE = EBF = ?, то 2? + 2?= 1800 и, таким образом, ?+ ? = 900. А это и означает, что BD? BE.

30 Биссектриса внешнего угла треугольника делит противолежащую сторону внешним образом на части, пропорциональные прилежащим сторонам.



(Рис.1.3) AB: BC = AD: DC, ?AED ~ ?CBD, AE/BC = AD/DC = AE/BC.

40 Биссектриса любого угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника.



Доказательство. Рассмотрим ?ABC. Пусть для определенности биссектриса CAB пересекает сторону BC в точке D (рис.1.4). Покажем, что BD: DC = AB: AC. Для этого проведем через точку C прямую, параллельную прямой AB, и обозначим через E точку пересечения этой прямой AD. Тогда DAB=DEC, ABD=ECD и поэтому ?DAB ~ ?DEC по первому признаку подобия треугольников. Далее, так как луч AD - биссектриса CAD , то CAE = EAB = AEC и, значит, ?ECA равнобедренный. Отсюда AC=CE. Но в таком случае из подобия ?DAB и ?DEC следует, что BD: DC=AB: CE =AB: AC, а это и требовалось доказать.

Если биссектриса внешнего угла треугольника пересекает продолжение стороны, противолежащей вершине этого угла, то отрезки от полученной точки пересечения до концов противолежащей стороны пропорциональны прилежащим сторонам треугольника.


Доказательство. Рассмотрим ?ABC. Пусть F - точка на продолжении стороны CA, D - точка пересечения биссектрисы внешнего BAF треугольника с продолжением стороны CB (рис. 1.5). Покажем, что DC:DB=AC:AB. Действительно, проведем через точку C прямую, параллельную прямой AB, и обозначим через E точку пересечения этой прямой с прямой DA. Тогда треугольник ADB ~ ?EDC и, значит, DC:DB=EC:AB. А поскольку ?EAC= ?BAD= ?CEA, то в равнобедренном ?CEA сторона AC=EC и, таким образом, DC:DB=AC:AB, что и требовалось доказать.


3 Решение задач на применение свойств биссектрисы


Задача 1. Пусть O - центр окружности, вписанной в ?ABC, CAB = ?. Доказать, что COB = 900 + ?/2.



Решение. Так как O - центр вписанной в ?ABC окружности (рис 1.6), то лучи BO и CO - биссектрисы ABC и BCA соответственно. А тогда COB = 1800 - (OBC +BCO)= 1800 - (ABC + BCA)/2 = 1800 -(1800 - ?)/2 = 900 + ?/2, что и требовалось доказать.

Задача 2. Пусть O - центр описанной около ?ABC окружности, H - основание высоты, проведенной к стороне BC. Доказать, что биссектриса CAB является также и биссектрисой ?OAH.




Пусть AD - биссектриса CAB, AE - диаметр описанной около ?ABC окружности (рис.1.7,1.8). Если ?ABC - остроугольный (рис. 1.7) и, значит, ABC<900, то так как ABC = AEC= ½ дуги AC, а ?BHA и ?ECA прямоугольные (BHA =ECA = 900), то ?BHA ~ ?ECA и, следовательно, CAO = CAE =HAB. Далее, BAD и CAD равны по условию, поэтому HAD = BAD - BAH =CAD - CAE = EAD = OAD. Пусть теперь ABC = 900 . В этом случае высота AH совпадает со стороной AB, то точка O будет принадлежать гипотенузе AC и поэтому справедливость утверждения задачи очевидна.

Рассмотрим случай, когда ABC > 900 (рис.1.8). Здесь четырехугольник ABCE вписан в окружность и, следовательно, AEC = 1800 - ABC. С другой стороны, ABH = 1800 - ABC, т.е. AEC = ABH. А поскольку ?BHA и ?ECA - прямоугольные и, значит, HAB = 900 - ABH = 900 - AEC = EAC, то HAD = HAB +BAD = EAC + CAD = EAD = OAD. Случаи, когда BAC и ACB - тупые рассматриваются аналогично. ?


4 Точка Жергонна


Точкой Жергонна называется точка пересечения отрезков, которые соединяют вершины треугольника с точками касания сторон, противоположных этим вершинам, и вписанной в треугольник окружности.

Пусть точка O - центр вписанной окружности треугольника ABC. Пусть вписанная окружность касается сторон треугольника BC,AC и AB в точках D,E и F соответственно. Точка Жергонна - это точка пересечения отрезков AD, BE и CF. Пусть точка O - центр вписанной окружности ?ABC. Пусть вписанная окружность касается сторон треугольника BC, AC и AB в точках D, E и F соответственно. Точка Жергонна - это точка пересечения отрезков AD, BE и CF.



Докажем, что эти три отрезка действительно пересекаются в одной точке. Заметим, что центр вписанной окружности - это точка пересечения биссектрис углов ?ABC, а радиусы вписанной окружности OD, OE и OF ? сторонам треугольника. Тем самым, имеем три пары равных треугольников (AFO и AEO, BFO и BDO, CDO и CEO).


Произведения AF?BD ? CE и AE ? BE ? CF равны, поскольку BF = BD, CD = CE, AE = AF, следовательно, отношение этих произведений равно, и по теореме Чевы (Пусть точки A1, B1, С1 лежат на сторонах BC, AC и AB ?ABC соответственно. Пусть отрезки AA1, BB1 и CC1 пересекаются в одной точке. Тогда


(обходим треугольник по часовой стрелке)), отрезки пересекаются в одной точке.


Свойства вписанной окружности:

Окружность называется вписанной в треугольник, если она касается всех его сторон.

В любой треугольник можно вписать окружность.

Дано: ABC - данный треугольник, О - точка пересечения биссектрис, М, L и К - точки касания окружности со сторонами треугольника (рис. 1.11).

Доказать: О - центр окружности, вписанной в АВС.



Доказательство. Проведем из точки О перпендикуляры OK, OL и ОМ соответственно к сторонам АВ, ВС и СА (рис.1.11). Так как точка О равноудалена от сторон треугольника ABC, то ОК = OL = ОМ. Поэтому окружность с центром О радиуса ОК проходит через точки K, L, M. Стороны треугольника ABC касаются этой окружности в точках К, L, М, так как они перпендикулярны к радиусам ОК, OL и ОМ. Значит, окружность с центром О радиуса ОК является вписанной в треугольник ABC. Теорема доказана.

Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.



Пусть ABC данный, O - центр вписанной в него окружности, D, E и F - точки касания окружности со сторонами (рис.1.12). ? AEO = ? AOD по гипотенузе и катету (EO = OD - как радиус, AO - общая). Из равенства треугольников следует, что? OAD = ? OAE. Значит AO биссектриса угла EAD. Точно также доказывается, что точка O лежит на двух других биссектрисах треугольника.

Радиус, проведенный в точку касания, перпендикулярен касательной.


Доказательство. Пусть окр.(O; R) данная окружность (рис.1.13), прямая a касается ее в точке P . Пусть радиус OP не перпендикулярен к a . Проведем из точки O перпендикуляр OD к касательной. По определению касательной, все ее точки, отличные от точки P , и, в частности, точка D лежат вне окружности. Следовательно, длина перпендикуляра OD больше R длины наклонной OP . Это противоречит свойству наклонной, и полученное противоречие доказывает утверждение.


ГЛАВА 2. 3 замечательные точки треугольника, окружность Эйлера, прямая Эйлера.


1 Центр описанной окружности треугольника


Серединным перпендикуляром к отрезку называется прямая, проходящая через середину отрезка и перпендикулярная к нему.

Теорема. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Обратно: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.

Доказательство. Пусть прямая m - серединный перпендикуляр к отрезку АВ, точка О - середина отрезка.

Рассмотрим произвольную точку М прямой m и докажем, что АМ=ВМ. Если точка М совпадает с точкой О, то это равенство верно, так как О - середина отрезка АВ. Пусть М и О - различные точки. Прямоугольные ?ОАМ и ?ОВМ равны по двум катетам (ОА=ОВ, ОМ - общий катет), поэтому АМ=ВМ.

) Рассмотрим произвольную точку N, равноудаленную от концов отрезка АВ, и докажем, что точка N лежит на прямой m. Если N - точка прямой АВ, то она совпадает с серединой О отрезка АВ и поэтому лежит на прямой m. Если точка N не лежит на прямой АВ, то рассмотрим ?АNB, который равнобедренный, так как АN=BN. Отрезок NO - медиана этого треугольника, а следовательно, и высота. Таким образом, NO перпендикулярна АВ, поэтому прямые ON и m совпадают, и, значит, N - точка прямой m. Теорема доказана.

Следствие. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, (центр описанной окружности).

Обозначим О, точку пересечения серединных перпендикуляров m и n к сторонам АВ и ВС ?АВС. По теореме (каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Обратно: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.) мы делаем вывод что ОВ=ОА и ОВ=ОC поэтому: ОА=ОС, т е точка О равноудалена от концов отрезка АС и, значит, лежит на серединном перпендикуляре p к этому отрезку. Следовательно, все три серединных перпендикуляра m, n и p к сторонам ?АВС пересекаются в точке О.

У остроугольного треугольника эта точка лежит внутри, у тупоугольного - вне треугольника, у прямоугольного - на середине гипотенузы.

Свойство серединного перпендикуляра треугольника:

Прямые, на которых лежат биссектрисы внутреннего и внешнего углов треугольника, выходящие из одной вершины, пересекаются с серединным к противолежащей стороне перпендикуляром с диаметрально противоположных точках описанной около треугольника окружности.



Доказательство. Пусть, например, биссектриса ABC пересекает описанную около ?ABC окружность в точке D (рис. 2.1). Тогда так как вписанные ABD и DBC равны, то AD= дуге DC. Но серединный к стороне AC перпендикуляр также делит дугу AC пополам, поэтому точка D будет принадлежать и этому серединному перпендикуляру. Далее, поскольку по свойству 30 из пункта 1.3 биссектриса BD ABC , смежного с ABC, то последняя пересечет окружность в точке, диаметрально противоположной точке D, так как вписанный прямой угол всегда опирается на диаметр.


2 Ортоцентр окружности треугольника


Высота - перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

Высоты треугольника (или их продолжения) пересекаются в одной точке, (ортоцентр).

Доказательство. Рассмотрим произвольный ?АВС и докажем, что прямые АА1, ВВ1, СС1, содержащие его высоты, пересекаются в одной точке. Проведем через каждую вершину ?АВС прямую, параллельную противоположной стороне. Получим ?А2B2C2. Точки А, B и С являются серединными сторон этого треугольника. Действительно, АВ=А2C и АВ=СВ2 как противоположные стороны параллелограммов АВА2C и АВСВ2, поэтому А2C=СВ2. Аналогично С2A=АВ2 и С2B=ВА2. Кроме того, как следует из построения, СС1 перпендикулярен А2B2, АА1 перпендикулярен В2C2 и ВВ1 перпендикулярен А2C2. Таким образом, прямые АА1,ВВ1 и СС1 являются серединными перпендикулярами к сторонам ?А2B2C2. Следовательно, они пересекаются в одной точке.

В зависимости от вида треугольника ортоцентр может находиться внутри треугольника в остроугольных, вне его - в тупоугольных или совпадать с вершиной, в прямоугольных - совпадает с вершиной при прямом угле.

Свойства высоты треугольника:

Отрезок, соединяющий основания двух высот остроугольного треугольника, отсекает от него треугольник, подобный данному, с коэффициентом подобия равным косинусу общего угла.



Доказательство. Пусть AA1, BB1 , CC1 - высоты остроугольного треугольника ABC, а ABC = ? (рис. 2.2). Прямоугольные треугольники BA1A и CC1B имеют общий ?, поэтому они подобны, а значит, BA1/BA = BC1/BC = cos ?. Отсюда следует, что BA1/BC1=BA/BC = cos ?, т.е. в ?C1BA1 и ?ABC стороны, прилежащие к общему ??C1BA1 ~ ?ABC, причем коэффициент подобия равен cos ?. Аналогичным образом доказывается, что ?A1CB1 ~ ?ABC с коэффициентом подобия cos BCA, а ?B1AC1 ~ ?ABC с коэффициентом подобия cos CAB.

Высота, опущенная на гипотенузу прямоугольного треугольника, делит его на два подобных между собой и подобных исходному треугольнику, треугольника.



Доказательство. Рассмотрим прямоугольный ?ABC, у которого ?BCA = 900 , а CD - его высота (рис. 2.3).

Тогда подобие ?ADC и ?BDC следует, например, из признака подобия прямоугольных треугольников по пропорциональности двух катетов, поскольку AD/CD = CD/DB. Каждый же из прямоугольных треугольников ADC и BDC подобен исходному прямоугольному треугольнику уже хотя бы на основании признака подобия по двум углам.

Решение задач на применение свойств высот

Задача 1. Доказать, что треугольник, одной из вершин которого является вершина данного тупоугольного треугольника, а две другие вершины - это основания высот тупоугольного треугольника, опущенных из двух других его вершин, подобен данному треугольнику с коэффициентом подобия, равным модулю косинуса угла при первой вершине.

Решение. Рассмотрим тупоугольный ?ABC с тупым CAB. Пусть AA1, BB1, CC1 - его высоты (рис. 2.4, 2.5, 2.6) и пусть CAB = ?, ABC = ?, BCA = ?.

Доказательство того факта, что ?C1BA1 ~ ?ABC (рис.2.4) с коэффициентом подобия k = cos?, полностью повторяет рассуждения, проведенные при доказательстве свойства 1, пункта 2.2.

Докажем, что ?A1CB ~ ?ABC (рис. 2.5) с коэффициентом подобия k1= cos ?, а ?B1AC1 ~ ?ABC (рис. 2.6) с коэффициентом подобия k2 = |cos?|.





Действительно, прямоугольные треугольники CA1A и CB1B имеют общий угол ? и поэтому подобны. Отсюда следует, что B1C/ BC = A1C / AC= cos ? и, значит, B1C/ A1C = BC / AC = cos ?, т.е. в треугольниках A1CB1 и ABC стороны, образующие общий ??, пропорциональны. А тогда по второму признаку подобия треугольников ?A1CB ~ ?ABC, причем коэффициент подобия k1= cos ?. Что же касается последнего случая (рис.2.6), то из рассмотрения прямоугольных треугольников ?BB1A и ?CC1A с равными вертикальными углами BAB1 и C1AC следует, что они подобны и, значит, B1A / BA = C1A / CA = cos (1800 - ?) = |cos?|, так как ?? - тупой. Отсюда B1A / C1A = BA /CA = |cos?| и, таким образом, в треугольниках ?B1AC1 и ?ABC стороны, образующие равные углы, пропорциональны. А это означает, что ?B1AC1 ~ ?ABC с коэффициентом подобия k2 = |cos?|.

Задача 2. Доказать, что если точка O - точка пересечения высот остроугольного треугольника ABC, то ABC + AOC = 1800, BCA + BOA = 1800, CAB + COB = 1800.


Решение. Докажем справедливость первой из приведенных в условии задачи формул. Справедливость остальных двух формул доказывается аналогично. Итак, пусть ABC = ?, AOC =?. A1, B1 и C1 - основания высот треугольника, проведенных из вершин A, B и C соответственно (рис.2.7). Тогда из прямоугольного треугольника BC1C следует, что BCC1 = 900 - ? и, таким образом, в прямоугольном треугольнике OA1C угол COA1 равен ?. Но сумма углов AOC + COA1 =? + ? дает развернутый угол и поэтому AOC + COA1 = AOC + ABC = 1800, что и требовалось доказать.

Задача 3. Доказать, что высоты остроугольного треугольника являются биссектрисами углов треугольника, вершинами которого являются основания высот данного треугольника.


ис.2.8


Решение. Пусть AA1, ВВ1, CC1 - высоты остроугольного треугольника ABC и пусть CAB = ? (рис.2.8). Докажем, например, что высота AA1 является биссектрисой угла C1A1B1. Действительно, так как треугольники C1BA1 и ABC подобны (свойство 1), то BA1C1 = ? и, значит, C1A1A = 900 - ?. Из подобия же треугольников A1CB1 и ABС следует, что AA1B1 = 900 - ? и поэтому C1A1A = AA1B1= 900 - ?. Но это и означает, что AA1 - биссектриса угла C1A1B1. Аналогично доказывается, что две другие высоты треугольника ABC являются биссектрисами двух других соответствующих углов треугольника A1B1C1.


3 Центр тяжести окружности треугольника


Медианой треугольника называется отрезок, соединяющий любую вершину треугольника с серединой противолежащей стороны.

Теорема. Медиана треугольника пересекаются в одной точке, (центр тяжести).

Доказательство. Рассмотрим произвольный ?АВС.



Обозначим буквой О точку пересечения медиан АА1 и ВВ1 и проведем среднюю линию А1B1 этого треугольника. Отрезок А1B1 параллелен стороне АВ, поэтому 1 = 2 и 3 = 4. Следовательно, ?АОВ и ?А1ОВ1 подобны по двум углам, и, значит, их стороны пропорциональны: АО:А1O=ВО:В1O=АВ:А1B1. Но АВ=2А1B1, поэтому АО=2А1O и ВО=2В1O. Таким образом, точка О пересечения медиан АА1 и ВВ1 делит каждую из них в отношении 2:1,считая от вершины.

Аналогично доказывается, что точка пересечения медиан ВВ1 и СС1 делит каждую из них в отношении 2:1, считая от вершины, и, следовательно, совпадает с точкой О и делятся ею в отношении 2:1,считая от вершины.

Свойства медианы треугольника:

10 Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении 2:1, считая от вершины.

Дано: ?АВС, АА1,ВВ1 - медианы.

Доказать: АО:ОА1=ВО:ОВ1=2:1

Доказательство. Проведем среднюю линию А1В1 (рис.2.10), по свойству средней линии А1В1||АВ, А1В1=1/2 AB. Так как А1В1 || АВ, то 1 = 2 накрест лежащие при параллельных прямых АВ и А1В1 и секущей АА1. 3 = 4 накрест лежащие при параллельных прямых А1В1 и АВ и секущей ВВ1.

Следовательно, ?АОВ ~ ?А1OB1 по равенству двух углов, значит, стороны пропорциональны: AO/A1O = OB/OB1 = AB/A1B = 2/1, AO/A1O = 2/1; OB/OB1 = 2/1.



Медиана разбивает треугольник на два треугольника одинаковой площади.


Доказательство. BD - медиана ?ABC (рис.2.11), BE - его высота. Тогда ?ABD и ?DBC равновелики, так как они имеют равные основания AD и DC соответственно и общую высоту BE.

Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

Если на продолжении медианы треугольника отложить от середины стороны треугольника отрезок, равный по длине медиане, то концевая точка этого отрезка и вершины треугольника являются вершинами параллелограмма.



Доказательство. Пусть D - середина стороны BC ?ABC (рис. 2.12), E - такая точка на прямой AD, что DE=AD. Тогда поскольку диагонали AE и BC четырехугольника ABEC в точке D их пересечения делятся пополам, то из свойства 13.4 и следует, что четырехугольник ABEC - параллелограмм.

Решение задач на применение свойств медиан:

Задача 1. Доказать, что если O - точка пересечения медиан ?ABC, то ?AOB, ?BOC и ?AOC равновелики.


Решение. Пусть AA1 и BB1 - медианы ?ABC(рис. 2.13). Рассмотрим ?AOB и ?BOC. Очевидно, что S?AOB = S?AB1B - S?AB1O , S?BOC = S?BB1C - S?OB1C . Но по свойству 2 имеем S?AB1B = S?BB1C , S?AOB = S?OB1C , откуда следует, что S?AOB = S?BOC . Аналогично доказывается и равенство S?AOB = S?AOC.

Задача 2. Доказать, что если точка O лежит внутри ?ABC и ?AOB, ?BOC и ?AOC равновелики, то O - точка пересечения медиан ?ABC.



Решение. Рассмотрим ?ABC (2.14) и предположим, что точка O не лежит на медиане BB1 . Тогда так как OB1 - медиана ?AOC, то S?AOB1 = S?B1OC , а поскольку по условию S?AOB = S?BOC , то S?AB1OB = S?BOB1C . Но этого быть не может, так как S?ABB1 = S?B1BC . Полученное противоречие означает, что точка O лежит на медиане BB1. Аналогично доказывается, что точка O принадлежит и двум другим медианам ?ABC. Отсюда и следует, что точка O действительно является точкой пересечения трех медиан ?ABC.

Задача 3. Доказать, что если в ?ABC стороны AB и BC не равны, то его биссектриса BD лежит между медианой BM и высотой BH.

Доказательство. Опишем около ?ABC окружность и продолжим его биссектрису BD до пересечения с окружностью в точке K. Через точку K будет проходить серединный к отрезку AC перпендикуляр (свойство1, из пункта 2.1), который с медианой имеет общую точку M. Но так как отрезки BH и MK параллельны, а точки B и K лежат по разные стороны от прямой AC, то точка пересечения отрезков BK и AC принадлежат отрезку HM, а это и доказывает требуемое.

Задача 4. В ?ABC медиана BM в два раза меньше стороны AB и образует с ней угол 400. Найдите ABC.



Решение. Продлим медиану BM за точку M на ее длину и получим точку D (рис. 2.15). Так как AB = 2BM , то AB = BD , то есть треугольник ABD - равнобедренный. Следовательно, BAD = BDA = (180o - 40o) : 2 = 70o. Четырёхугольник ABCD является параллелограммом, так как его диагонали точкой пересечения делятся пополам. Значит, CBD = ADB = 700 . Тогда ABC = ABD + CBD =1100.Ответ 1100.

Задача 5. Стороны?ABC равны a, b, c . Вычислить медиану mc, проведенную к стороне с.(рис.2.16).



Решение. Удвоим медиану, достроив?ABC до параллелограмма АСВР, и применим к этому параллелограмму теорему 8. Получим: CP2+AB2 = 2AC2+2BC2, т.е. (2mc)2+c2= 2b2+2a2, откуда находим:

2.4 Окружность Эйлера. Прямая Эйлера


Теорема. Основания медиан, высот произвольного треугольника, а также середины отрезков, соединяющих вершины треугольника с его ортоцентром, лежат на одной окружности, радиус которой равен половине радиуса описанной около треугольника окружности. Эта окружность называется окружностью девяти точек или окружностью Эйлера.

Доказательство. Возьмем серединный?MNL (рис. 2.17) и опишем около него окружность W. Отрезок LQ - медиана в прямоугольном?AQB, поэтому LQ=1/2AB. Отрезок MN=1/2AB, т.к. MN- средняя линия?ABC. Отсюда следует, что трапеция QLMN - равнобочная. Так как окружность W проходит через 3 вершины равнобочной трапеции L, M, N, то она пройдет и через четвертую вершину Q. Аналогично доказывается, что P принадлежит W, R принадлежит W.

Перейдем к точкам X, Y, Z. Отрезок XL перпендикулярен BH как средняя линия?AHB. Отрезок BH перпендикулярен AC и так как AC параллельно LM, то BH перпендикулярно LM. Следовательно, XLM=П/2. Аналогично, XNM= П/2.

В четырехугольнике LXNM два противоположных угла прямые, поэтому около него можно описать окружность. Это будет окружность W. Итак, X принадлежит W, аналогично Y принадлежит W, Z принадлежит W.

Серединный?LMN подобен?ABC. Коэффициент подобия равен 2. Следовательно, радиус окружности девяти точек равен R/2.

Свойства окружности Эйлера:

Радиус окружности девяти точек равен половине радиуса окружности, описанной около?ABC.

Окружность девяти точек гомотетична окружности, описанной около?ABC, с коэффициентом ½ и центром гомотетии в точке H.



Теорема. Ортоцентр, центроид, центр описанной окружности и центр окружности девяти точек лежат на одной прямой. Прямая Эйлера.

Доказательство. Пусть H - ортоцентр?ABC (рис.2.18) и O - центр описанной окружности. По построению серединные перпендикуляры?ABC содержат высоты серединного?MNL, т. O одновременно ортоцентром?LMN. ?LMN ~ ?ABC, их коэффициент подобия равен 2, поэтому BH=2ON.

Проведем через точки H и O прямую. Получим два подобных треугольника?NOG и?BHG. Так как BH=2ON, то и BG=2GN. Последнее означает что точка G является центроидом?ABC. Для точки G выполняется соотношение HG:GO=2:1.

Пусть далее TF есть серединный перпендикуляр?MNL и F - точка пересечения этого перпендикуляра с прямой HO. Рассмотрим подобные?TGF и?NGO. Точка G - центроид?MNL, поэтому коэффициент подобия?TGF и?NGO равен 2. Отсюда OG=2GF и так как HG=2GO, то HF=FO и F - середина отрезка HO.

Если провести те же рассуждения относительно серединного перпендикуляра к другой стороне?MNL, то он также должен пройти через середину отрезка HO. Но это означает, что точка F - точка серединных перпендикуляров?MNL. Такая точка является центром окружности Эйлера. Теорема доказана.



ЗАКЛЮЧЕНИЕ


В данной работе мы рассмотрели 4 замечательные точки треугольника, изучаемые в школе и их свойства, на основе которых мы можем решать множество задач. Так же были рассмотрены точка Жергонна, окружность Эйлера и прямая Эйлера.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ


1.Геометрия 7-9. Учебник для средних школ // Атанасян Л.С., Бутузов В.Ф. и др. - М.: Просвещение, 1994.

2.Амелькин В.В. Геометрия на плоскости: Теория, задачи, решения: Учеб. Пособие по математике // В. В. Амелькин, В.Л. Рабцевич, В.Л. Тимохович - Мн.: «Асар », 2003.

.В.С. Болодурин, О.А. Вахмянина, Т.С. Измайлова // Пособие по элементарной геометрии. Оренбург, ОГПИ, 1991.

.Прасолов В.Г. Задачи по планиметрии. - 4-е изд., дополненное - М.: Изд-во Московского центра непрерывного математического обра-зования, 2001.

Министерство общего и профессионального образования Свердловской области.

МОУО г. Екатеринбург.

Образовательное учреждение – МОУСОШ № 212 «Екатеринбургский культурологический лицей»

Образовательная область – математика.

Предмет – геометрия.

Замечательные точки треугольника

Референт : учащийся 8 класса

Селицкий Дмитрий Константинович.

Научный руководитель:

Рабканов Сергей Петрович.

Екатеринбург, 2001

Введение 3

Описательная часть:

    Ортоцентр 4

    Ицентр 5

    Центр тяжести 7

    Центр описанной окружности 8

    Прямая Эйлера 9

Практическая часть:

    Ортоцентрический треугольник 10

    Заключение 11

    Список литературы 11

Введение.

Геометрия начинается с треугольника. Вот уже два с половиной тысячелетия треугольник является символом геометрии. Постоянно открываются его новые свойства. Чтобы рассказать обо всех известных свойствах треугольника, потребуется большое количество времени. Меня заинтересовали так называемые «Замечательные точки треугольника». Примером таких точек является точка пересечения биссектрис. Замечательно то, что если взять три произвольные точки пространства, построить из них треугольник и провести биссектрисы, то они (биссектрисы) пересекутся в одной точке! Казалось бы, это не возможно, потому что мы взяли произвольные точки, но это правило действует всегда. Подобными свойствами обладают и другие «замечательные точки»

После прочтения литературы по данной теме, я зафиксировал для себя определения и свойства пяти замечательных точек и треугольника. Но на этом моя работа не закончилась, мне захотелось самому исследовать эти точки.

Поэтому цель данной работы – изучение некоторых замечательные свойства треугольника, и исследование ортоцентрического треугольника. В процессе достижения поставленной цели можно выделить следующие этапы:

    Подбор литературы, с помощью преподавателя

    Изучение основных свойств замечательных точек и линий треугольника

    Обобщение этих свойства

    Составление и решение задачи, связанной с ортоцентрическим треугольником

Полученные результаты я изложил в данной научно-исследовательской работе. Все чертежи я выполнил с использованием компьютерной графики (векторный графический редактор CorelDRAW).

Ортоцентр. (Точка пересечения высот)

Докажем, что высоты пересекаются в одной точке. Проведём через вершины А , В и С треугольника АВС прямые, параллельные противоположным сторонам. Эти прямые образуют треугольник А 1 В 1 С 1 . высоты треугольника АВС являются серединными перпендикулярами к сторонам треугольника А 1 В 1 С 1 . следовательно, они пересекаются в одной точке – центре описанной окружности треугольника А 1 В 1 С 1 . Точка пересечения высот треугольника называется ортоцентром (H ).

Ицентр – центр вписанной окружности.

(Точка пересечения биссектрис)

Докажем, что биссектрисы углов треугольника АВС пересекаются в одной точке. Рассмотрим точку О пересечения биссектрис углов А и В . любые точки биссектрисы угла А равноудалена от прямых АВ и АС , а любая точка биссектрисы угла В равноудалена от прямых АВ и ВС , поэтому точка О равноудалена от прямых АС и ВС , т.е. она лежит на биссектрисе угла С . точка О равноудалена от прямых АВ , ВС и СА , значит, существует окружность с центром О , касающаяся этих прямых, причём точки касания лежат на самих сторонах, а не на их продолжениях. В самом деле, углы при вершинах А и В треугольника АОВ острые поэтому проекция точки О на прямую АВ лежит внутри отрезка АВ .

Для сторон ВС и СА доказательство аналогично.

Ицентр обладает тремя свойствами:

    Если продолжение биссектрисы угла С пересекает описанную окружность треугольника АВС в точке М , то МА =МВ =МО .

    Если АВ - основание равнобедренного треугольника АВС , то окружность, касающаяся сторон угла АСВ в точках А и В , проходит через точку О .

    Если прямая, проходящая через точку О параллельно стороне АВ , пересекает стороны ВС и СА в точках А 1 и В 1 , то А 1 В 1 =А 1 В +АВ 1 .

Центр тяжести. (Точка пересечения медиан)

Докажем, что медианы треугольника пересекаются в одной точке. Рассмотрим для этого точку М , в которой пересекаются медианы АА 1 и ВВ 1 . проведём в треугольникеВВ 1 С среднюю линию А 1 А 2 , параллельную ВВ 1 . тогда А 1 М:АМ =В 1 А 2 :АВ 1 =В 1 А 2 1 С =ВА 1 :ВС =1:2, т.е. точка пересечения медиан ВВ 1 и АА 1 делит медиану АА 1 в отношении 1:2. Аналогично точка пересечения медиан СС 1 и АА 1 делит медиану АА 1 в отношении 1:2. Следовательно, точка пересечения медиан АА 1 и ВВ 1 совпадает с точкой пересечения медиан АА 1 и СС 1 .

Если точку пересечения медиан треугольника соединить с вершинами, то треугольники разобьётся на три треугольника равной площади. В самом деле, достаточно доказать, что если Р – любая точка медианы АА 1 в треугольнике АВС , то площади треугольников АВР и АСР равны. Ведь медианы АА 1 и РА 1 в треугольниках АВС и РВС разрезают их на треугольники равной площади.

Справедливо и обратное утверждение: если для некоторой точки Р , лежащей внутри треугольника АВС , площади треугольников АВР , ВСР и САР равны, то Р – точка пересечения медиан.

У точки пересечения есть ещё одно свойство: если вырезать треугольник из какого-либо материала, провести на нём медианы, закрепить в точке пересечения медиан подвез и закрепить подвес на штативе, то модель (треугольник) будет находиться в состоянии равновесия, следовательно, точка пересечения есть ни что иное, как центр тяжести треугольника.

Центр описанной окружности.

Докажем, что существует точка, равноудалённая от вершин треугольника, или, иначе, что существует окружность, проходящая через три вершины треугольника. Геометрическим местом точек, равноудалённых от точек А и В , является перпендикуляр к отрезку АВ , проходящий через его середину (серединный перпендикуляр к отрезку АВ ). Рассмотрим точку О , в которой пересекаются серединные перпендикуляры к отрезкам АВ и ВС . Точка О равноудалена от точек А и В , а также от точек В и С . поэтому она равноудалена от точек А и С , т.е. она лежит и на серединном перпендикуляре к отрезку АС .

Центр О описанной окружности лежит внутри треугольника, только если этот треугольник остроугольный. Если же треугольник прямоугольный, то точка О совпадает с серединой гипотенузы, а если угол при вершине С тупой, то прямая АВ разделяет точки О и С .

В математике часто бывает так, что объекты, определённые совсем по-разному, оказываются совпадающими. Покажем это на примере.

Пусть А 1 , В 1 , С 1 – середины сторон ВС , СА и АВ. Можно доказать, что окружности, описанные около треугольников АВ 1 С , А 1 ВС 1 и А 1 В 1 С 1 пересекаются в одной точке, причём эта точка – центр описанной окружности треугольника АВС . Итак, у нас есть две, казалось бы, совсем разные точки: точка пересечения серединных перпендикуляров к сторонам треугольника АВС и точка пересечения описанных окружностей треугольников АВ 1 С 1 , А 1 ВС и А 1 В 1 С 1 . а оказывается, что эти две точки совпадают.

Прямая Эйлера.

Самым удивительным свойством замечательных точек треугольника является то, что некоторые из них связаны друг с другом определёнными соотношениями. Например, центр тяжести М , ортоцентр Н и центр описанной окружности О лежат на одной прямой, причём точка М делит отрезок ОН так, что справедливо соотношение ОМ:МН =1:2. Эта теорема была доказана в 1765 г. швейцарским учёным Леонардо Эйлером.

Ортоцентрический треугольник.

Ортоцентрический треугольник (ортотреугольник) – это треугольник (М N К ), вершинами которого служат основания высот данного треугольника (АВС ). Этот треугольник обладает многими интересными свойствами. Приведем одно из них.

Свойство.

Доказать:

Треугольники AKM , CMN и BKN подобны треугольнику АВС ;

Углы ортотреугольника MNK таковы: L KNM = π - 2 L A , L KMN = π – 2 L B , L MNK = π - - 2 L C .

Доказательство:

Имеем AB cos A , AK cos A . Следовательно, AM /AB = AK /AC .

Т.к. у треугольников ABC и AKM угол А – общий, то они подобны, откуда заключаем, что угол L AKM = L C . Поэтому L BKM = L C . Далее имеем L MKC = π/2 – L C , L NKC = π/2 – - - L C , т.е. СК – биссектриса угла MNK . Итак, L MNK = π – 2 L C . Аналогично доказываются остальные равенства.

Заключение.

В заключение данной научно-исследовательской работы можно сделать следующие выводы:

    Замечательными точками и линиями треугольника являются:

    ортоцентр треугольника - это точка пересечения его высот;

    ицентр треугольника – это точка пересечения биссектрис;

    центр тяжести треугольника - это точка пересечения его медиан;

    центр описанной окружности – это точка пересечения серединных перпендикуляров;

    прямая Эйлера – это прямая, на которой лежат центр тяжести, ортоцентр и центр описанной окружности.

    Ортоцентрический треугольник делит данный треугольник на три подобных данному.

Проделав данную работу, я узнал много нового о свойствах треугольника. Данная работа явилась актуальной для меня с точки зрения развития моих знаний в области математики. В дальнейшем я предполагаю развивать эту интереснейшую тему.

Список литературы.

    Киселёв А. П. Элементарная геометрия. – М.: Просвещение, 1980.

    Коксетер Г.С., Грейтцер С.Л. Новые встречи с геометрией. – М.: Наука, 1978.

    Прасолов В.В. Задачи по планиметрии. – М.: Наука, 1986. – Ч. 1.

    Шарыгин И.Ф. Задачи по геометрии: Планиметрия. – М.: Наука, 1986.

    Сканави М. И. Математика. Задачи с решениями. – Ростов-на-Дону: Феникс, 1998.

    Берже М. Геометрия в двух томах – М: Мир, 1984.

Понравилась статья? Поделитесь ей