Контакты

Антигены, свойства. Антигенная структура бактерий

  • 1.Медицинская микробиология. Предмет, задачи, методы, связь с другими науками. Значение медицинской микробиологии в практической деятельности врача.
  • 3. Микроорганизмы и их положение в системе живого мира. Номенклатура бактерий. Принципы классификации.
  • 6. Рост и размножение бактерий. Фазы размножения.
  • 7.Питание бактерий. Типы и механизмы питания бактерий. Аутотрофы и гетеротрофы. Факторы роста. Прототрофы и ауксотрофы.
  • 8.Питательные среды. Искусственные питательные среды: простые, сложные, общего назначения, элективные, дифференциально-диагностические.
  • 9. Бактериологический метод изучения микроорганизмов. Принципы и методы выделения чистых культур аэробных и анаэробных бактерий. Характер роста микроорганизмов на жидких и плотных питательных средах.
  • 13. Спирохеты, их морфология и биологические свойства. Патогенные для человека виды.
  • 14. Риккетсии, их морфология и биологические свойства. Роль риккетсий в инфекционной патологии.
  • 15. Морфология и ультраструктура микоплазм. Виды, патогенные для человека.
  • 16. Хламидии, морфология и другие биологические свойства. Роль в патологии.
  • 17. Грибы, их морфология и особенности биологии. Принципы систематики. Заболевания, вызываемые грибами у человека.
  • 20. Взаимодействие вируса с клеткой. Фазы жизненного цикла. Понятие о персистенции вирусов и персистентных инфекциях.
  • 21. Принципы и методы лабораторной диагностики вирусных инфекций. Методы культивирования вирусов.
  • 24. Строение генома бактерий. Подвижные генетические элементы, их роль в эволюции бактерий. Понятие о генотипе и фенотипе. Виды изменчивости: фенотипическая и генотипическая.
  • 25. Плазмиды бактерий, их функции и свойства. Использование плазмид в генной инженерии.
  • 26. Генетические рекомбинации: трансформация, трансдукция, конъюгация.
  • 27. Генная инженерия. Использование методов генной инженерии для получения диагностических, профилактических и лечебных препаратов.
  • 28.Распространение микробов в природе. Микрофлора почвы, воды, воздуха, методы ее изучения. Характеристика санитарно-показательных микроорганизмов.
  • 29. Нормальная микрофлора тела человека, ее роль в физиологических процессах и патологии. Понятие о дисбактериозе. Препараты для восстановления нормальной микрофлоры: эубиотики (пробиотики).
  • 31. Формы проявления инфекции. Персистенция бактерий и вирусов. Понятие о рецидиве, реинфекции, суперинфекции.
  • 32. Динамика развития инфекционного процесса, его периоды.
  • 33. Роль микроорганизма в инфекционном процессе. Патогенность и вирулентность. Единицы измерения вирулентности. Понятие о факторах патогенности.
  • 34. Классификация факторов патогенности по о.В. Бухарину. Характеристика факторов патогенности.
  • 35. Понятие об иммунитете. Виды иммунитета.
  • 36. Неспецифические защитные факторы организма против инфекции. Роль и.И. Мечникова в формировании клеточной теории иммунитета.
  • 37. Антигены: определение, основные свойства. Антигены бактериальной клетки. Практическое использование антигенов бактерий.
  • 38. Структура и функции иммунной системы. Кооперация иммунокомпетентных клеток. Формы иммунного ответа.
  • 39. Иммуноглобулины, их молекулярная структура и свойства. Классы иммуноглобулинов. Первичный и вторичный иммунный ответ. :
  • 40. Классификация гиперчувствительности по Джейлу и Кумбсу. Стадии аллергической реакции.
  • 41. Гиперчувствительность немедленного типа. Механизмы возникновения, клиническая значимость.
  • 42. Анафилактический шок и сывороточная болезнь. Причины возникновения. Механизм. Их предупреждение.
  • 43. Гиперчувствительность замедленного типа. Кожно-аллергические пробы и их использование в диагностике некоторых инфекционных заболеваний.
  • 44. Особенности противовирусного, противогрибкового, противоопухолевого, трансплантационного иммунитета.
  • 45. Понятие о клинической иммунологии. Иммунный статус человека и факторы, влияющие на него. Оценка иммунного статуса: основные показатели и методы их определения.
  • 46. Первичные и вторичные иммунодефициты.
  • 47. Взаимодействие антигена с антителом in vitro. Теория сетевых структур.
  • 48. Реакция агглютинации. Компоненты, механизм, способы постановки. Применение.
  • 49. Реакция Кумбса. Механизм. Компоненты. Применение.
  • 50. Реакция пассивной гемагглютинации. Механизм. Компоненты. Применение.
  • 51. Реакция торможения гемагглютинации. Механизм. Компоненты. Применение.
  • 53. Реакция связывания комплемента. Механизм. Компоненты. Применение.
  • 54. Реакция нейтрализации токсина антитоксином, нейтрализации вирусов в культуре клеток и в организме лабораторных животных. Механизм. Компоненты. Способы постановки. Применение.
  • 55. Реакция иммунофлюоресценции. Механизм. Компоненты. Применение.
  • 56. Иммуноферментный анализ. Иммуноблотинг. Механизмы. Компоненты. Применение.
  • 57. Вакцины. Определение. Современная классификация вакцин. Требования, предъявляемые к вакцинным препаратам.
  • 59. Вакцинопрофилактика. Вакцины из убитых бактерий и вирусов. Принципы приготовления. Примеры убитых вакцин. Ассоциированные вакцины. Преимущества и недостатки убитых вакцин.
  • 60. Молекулярные вакцины: анатоксины. Получение. Использование анатоксинов для профилактики инфекционных заболеваний. Примеры вакцин.
  • 61. Генно-инженерные вакцины. Получение. Применение. Преимущества и недостатки.
  • 62. Вакцинотерапия. Понятие о лечебных вакцинах. Получение. Применение. Механизм действия.
  • 63. Диагностические антигенные препараты: диагностикумы, аллергены, токсины. Получение. Применение.
  • 64. Сыворотки. Определение. Современная классификация сывороток. Требования, предъявляемые к сывороточным препаратам.
  • 65. Антительные препараты – сыворотки, применяемые для лечения и профилактики инфекционных заболеваний. Способы получения. Осложнения при применении и их предупреждение.
  • 66. Антительные препараты – сыворотки, применяемые для диагностики инфекционных заболеваний. Способы получения. Применение.
  • 67. Понятие об иммуномодуляторах. Принцип действия. Применение.
  • 68. Интерфероны. Природа, способы получения. Применение. № 99 Интерфероны. Природа, способы получения. Применение.
  • 69. Химиотерапевтические препараты. Понятие о химиотерапевтическом индексе. Основные группы химиотерапевтических препаратов, механизм их антибактериального действия.
  • 71. Лекарственная устойчивость микроорганизмов и механизм ее возникновения. Понятие о госпитальных штаммах микроорганизмов. Пути преодоления лекарственной устойчивости.
  • 72. Методы микробиологической диагностики инфекционных болезней.
  • 73. Возбудители брюшного тифа и паратифов. Таксономия. Характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 74. Возбудители эшерихиозов. Таксономия. Характеристика. Роль кишечной палочки в норме и патологии. Микробиологическая диагностика эшерихиозов.
  • 75. Возбудители шигеллеза. Таксономия. Характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 76. Возбудители сальмонеллезов. Таксономия. Характеристи­ка. Микробиологический диагноз сальмонеллезов. Лечение.
  • 77. Возбудители холеры. Таксономия. Характеристика. Микробиологическая диагностика. Специфическая профи­лактика и лечение.
  • 78.Стафилококки. Таксономия. Характеристика. Микроби­ологическая диагностика заболеваний, вызываемых ста­филококками. Специфическая профилактика и лечение.
  • 79. Стрептококки. Таксономия. Характеристика. Микро­биологическая диагностика стрептококковых инфек­ций. Лечение.
  • 80. Менингококки. Таксономия. Характеристика. Микро­биологическая диагностика стрептококковых инфек­ций. Лечение.
  • 81. Гонококки. Таксономия. Характеристика. Микробио­логическая диагностика гонореи. Лечение.
  • 82. Возбудитель туляремии. Таксономия. Характеристи­ка. Микробиологическая диагностика. Специфическая про­филактика и лечение.
  • 83. Возбудитель сибирской язвы. Таксономия и характе­ристика. Микробиологическая диагностика. Специфичес­кая профилактика и лечение.
  • 84. Возбудитель бруцеллеза. Таксономия и характерис­тика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 85. Возбудитель чумы. Таксономия и характеристика. Микробиологическая диагностика. Специфическая профи­лактика и лечение.
  • 86. Возбудители анаэробной газовой инфекции. Таксономия и характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 87. Возбудители ботулизма. Таксономия и характеристика Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 88. Возбудитель столбняка. Таксономия и характеристика. Микробиологическая диагностика и лечение.
  • 89. Неспорообразующие анаэробы. Таксономия. Характе­ристика. Микробиологическая диагностика и лечение.
  • 90. Возбудитель дифтерии. Таксономия и характеристика. Условно – патогенные коринебактерии. Микробиологическая диагностика. Выявления анатоксического иммунитета. Специфическая профилактика и лечение.
  • 91. Возбудители коклюша и паракоклюша. Таксономия и характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 92. Возбудители туберкулеза. Таксономия и характеристика. Условно – патогенные микобактерии. Микробиологическая диагностика туберкулеза.
  • 93. Актиномицеты. Таксономия. Характеристика. Мик­робиологическая диагностика. Лечение.
  • 95. Возбудитель хламидиозов. Таксономия. Характеристи­ка. Микробиологическая диагностика. Лечение.
  • 96.Возбудитель сифилиса. Таксономия. Характеристика. Микробиологическая диагностика. Лечение.
  • 97. Возбудитель лептоспирозов. Таксономия. Характери­стика. Микробиологическая диагностика. Специфическая профилактика. Лечение.
  • 98. Возбудитель боррелиозов. Таксономия. Характерис­тика. Микробиологическая диагностика.
  • 99. Клиническая микробиология, ее задачи. Вби, особенности причины возникновления.Роль условно – патогенных микроорганизмов в возникновении внутрибольничных инфекций.
  • 100. Классификация грибов. Характеристика. Роль в патологии. Лабораторная диагностика. Лечение.
  • 101. Классификация микозов. Поверхностные и глубокие микозы. Дрожжеподобные грибы рода кандида. Роль в патологии человека.
  • 102. Возбудитель гриппа. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилакти­ка и лечение.
  • 103. Возбудитель полиомиелита. Таксономия и характери­стика. Лабораторная диагностика. Специфическая про­филактика.
  • 104. Возбудители гепатитов а и е. Таксономия. Характе­ристика. Лабораторная диагностика. Специфическая про­филактика.
  • 105. Возбудитель клещевого энцефалита. Таксономия. Ха­рактеристика. Лабораторная диагностика. Специфичес­кая профилактика.
  • 106. Возбудитель бешенства. Таксономия. Характеристи­ка. Лабораторная диагностика. Специфическая профи­лактика.
  • 107. Возбудитель краснухи. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилак­тика.
  • 108. Вирус кори. Таксономия. Характеристика. Лабора­торная диагностика. Специфическая профилактика.
  • Антигены обладают рядом характерных свойств: антигенностью, специфичностью и иммуногенностью.

    Антигенность . Под антигенностью понимают потенциаль­ную способность молекулы антигена акти­вировать компоненты иммунной системы и специфически взаимодействовать с фактора­ми иммунитета (антитела, клон эффекторных лимфоцитов). Иными словами, антиген дол­жен выступать специфическим раздражителем по отношению к иммунокомпетентным клет­кам. При этом взаимодействие компоненты иммунной системы происходит не со всей молекулой одновременно, а только с ее не­большим участком, который получил название «антигенная детерминанта», или «эпитоп».

    Чужеродность является обязательным усло­вием для реализации антигенности. По этому критерию система приобретенного иммунитета дифференцирует потенциально опасные объ­екты биологического мира, синтезированные с чужеродной генетической матрицы. Понятие «чужеродность» относительное, так как имму-нокомпетентные клетки не способны напря­мую анализировать чужеродный генетический код. Они воспринимают лишь опосредованную информацию, которая, как в зеркале, отражена в молекулярной структуре вещества.

    Иммуногенность - потенциальная способ­ность антигена вызывать по отношению к себе в макроорганизме специфическую за­щитную реакцию. Степень иммуногенности зависит от ряда факторов, которые можно объединить в три группы: 1. Молекулярные особенности антигена; 2. Клиренс антигена в организме; 3. Реактивность макроорганизма.

    К первой группе факторов отнесены природа, химический состав, молекулярный вес, струк­тура и некоторые другие характеристики.

    Иммуногенность в значительной степени за­висит от природы антигена. Важна также оптическая изомерия аминокислот, составляющих молекулу белка. Большое значение имеет размер и молекулярная масса антигена. На степень иммуногенности также оказыва­ет влияние пространственная структура анти­гена. Оказалась также существенной стерическая стабильность молекулы антигена. Еще одним важным условием иммуно­генности является растворимость антигена.

    Вторая группа факторов связана с динамикой поступления антигена в организм и его выведе­ния. Так, хорошо известна зависимость иммуногенности антигена от способа его введения. На иммунный ответ влияет количество пос­тупающего антигена: чем его больше, тем более выражен иммунный ответ.

    Третья группа объединяет факторы , опреде­ляющие зависимость иммуногенности от со­стояния макроорганизма. В этой связи на пер­вый план выступают наследственные факторы.

    Специфичностью называют способность ан­тигена индуцировать иммунный ответ к строго определенному эпитопу. Это свойство обуслов­лено особенностями формирования иммунно­го ответа - необходима комплементарность рецепторного аппарата иммунокомпетентных клеток к конкретной антигенной детерминанте. Поэтому специфичность антигена во многом определяется свойствами составляющих его эпитопов. Однако при этом следует учитывать условность границ эпитопов, их структурное разнообразие и гетерогенность клонов антигенреактивных лимфоцитовой специфичности. В результате этого организм на антигенное раз­дражение всегда отвечает поликлональными им­мунным ответом.

    Антиге­ны бактериальной клетки. В структуре бактериальной клетки разли­чают жгутиковые, соматические, капсульные и некоторые другие антигены. Жгутиковые, или Н-антигены, локализуют­ся в локомоторном аппарате бактерий - их жгутиках. Они представляют собой эпитопы сократительного белка флагеллина. При на­гревании флагеллин денатурирует, и Н-антиген теряет свою специфичность. Фенол не действует на этот антиген.

    Соматический, или О-антиген, связан с клеточной стенкой бактерий. Его основу со­ставляют ЛПС. О-антиген проявляет термос­табильные свойства - он не разрушается при длительном кипячении. Однако соматичес­кий антиген подвержен действию альдегидов (например, формалина) и спиртов, которые нарушают его структуру.

    Капсулъные, или К-антигены, располагаются на поверхности клеточной стенки. Встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты). В то же время у бациллы сибирской язвы этот антиген построен из по­липептидных цепей. По чувствительности к нагреванию различают три типа К-антигена: А, В, и L. Наибольшая термостабильность ха­рактерна для типа А, он не денатурирует даже при длительном кипячении. Тип В выдержи­вает непродолжительное нагревание (около 1 часа) до 60 "С. Тип L быстро разрушается при этой температуре. Поэтому частичное удале­ние К-антигена возможно путем длительного кипячения бактериальной культуры.

    На поверхности возбудителя брюшного ти­фа и других энтеробактерий, которые облада­ют высокой вирулентностью, можно обнару­жить особый вариант капсульного антигена. Он получил название антигена вирулентнос­ти, или Vi -антигена. Обнаружение этого ан­тигена или специфичных к нему антител име­ет большое диагностическое значение.

    Антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые другие белки, которые секретируются бактериями в окружающую среду (на­пример, туберкулин). При взаимодействии со специфическими антителами токсины, фер­менты и другие биологически активные моле­кулы бактериального происхождения теряют свою активность. Столбнячный, дифтерий­ный и ботулинический токсины относятся к числу сильных полноценных антигенов, поэ­тому их используют для получения анатокси­нов для вакцинации людей.

    В антигенном составе некоторых бактерий выделяется группа антигенов с сильно выра­женной иммуногенностью, чья биологическая активность играет ключевую роль в формиро­вании патогенности возбудителя. Связывание таких антигенов специфическими антителами практически полностью инактивирует виру­лентные свойства микроорганизма и обеспечи­вает иммунитет к нему. Описываемые антиге­ны получили название протективных . Впервые протективный антиген был обнаружен в гнойном отделяемом карбункула, вызванного ба­циллой сибирской язвы. Это вещество являет­ся субъединицей белкового токсина, которая ответственна за активацию других, собственно вирулентных субъединиц - так называемого отечного и летального факторов.

    "

Животный мир живет в окружении массы микробов, однако только их небольшая часть вызывает заболевания. Такие микробы именуют патогенами . Степень болезнетворности патогенов, т.е. их способности вызывать заболевание, называется вирулентностью . Высоковирулентные микробы обладают большей способностью индуцировать болезнь по сравнению с маловирулентными микроорганизмами. Среди патогенных микробов выделяют первичные патогены, т.е. микробы, которые, попадая в здоровый организм даже в низких количествах, вызывают заболевание вне условий подавления его иммунной защиты. К первичным патогенам относят вирус собачьей чумы (Distemper virus), вирус иммунодефицита человека (HIV - Human immunodeficiency virus), вызывающий заболевание, которое называется синдромом первичного иммунодефицита - СПИДом, бруцеллы (Brucella abortus), индуцирующие контагиозный аборт и др. Другие микробы, населяя ткани здорового организма, не вызывают его заболевания. Болезнь развивается только при иммунодефиците, т.е. в условиях нарушения функций системы иммунитета. Такие микробы называют оппортунистическими, а болезни ими вызываемые - оппортунистическими инфекциями. К ним относят, например, заболевания, вызываемые бактериями Pasteurella hemolytica; пневмонию, вызываемую простейшими (одноклеточные грибы?) Pneumocystis carnii; токсоплазмоз, индуцируемый токсоплазмами Toxoplasma gondii; желудочно-кишечные инфекции, вызываемые Isospora, Giardia, Entamoeba, в т.ч. криптоспороз, вызываемый Cryptosporidium; грибковые оппортунистические инфекции , в частности кандидоз полости рта и/или пищевода, вызываемый грибками Candida albicans, криптококкоз, вызываемый грибками Cryptococcus neoformans, гистоплазмоз, вызываемый грибками Histoplasma capsulatum, и др.
В силу множественности микробных форм, окружающих организм и проникающих в его ткани, защита особи системой иммунитета от болезнетворного влияния патогенов предполагает прежде всего распознавание особенностей антигенной структуры этих микроформ и затем формирование эффекторных механизмов, направленных на их разрушение и выведение образованных фрагментов из организма.

Каждый микроорганизм, как бы примитивно он ни был устроен, содержит несколько антигенов. Чем сложнее его структура, тем больше антигенов можно обнаружить в его составе. У различных микроорганизмов, принадлежащих к одним и тем же систематическим категориям, различают

группопецифические антигены - встречаются у разных видов одного и того же рода или семейства, видоспецифические - у различных представителей одного вида и типоспецифические (вариантные) антигены - у разных вариантов в пределах одного и того же вида. Последние подразделяют на серологические варианты, или серовары. Среди бактериальных антигенов различают Н, О, К и др. Антигены разных видов микроорганизмов по структуре составу резко отличаются друг от друга. Лучше всего изучен, антигенная мозаика бактерий, в составе которых различаю соматические О- и Vi-антигены, оболочечные, капсульные (К), жгутиковые (Н), протективные и рибосомальные. Как правило, все они являются сложными белковыми соединениями. Так, соматические О- и Vi-антигены содержатся в поверхностных структурах бактериальных клеток и тесно связаны с липополисахаридами. Оболочечные антигены образуются за счет О-антигенов, но в отличие от последних состоят из термолабильных и термостабильных фракций. Капсульные К-антигены представлены протеиновыми субстанциями (сибиреязвенная палочка) или сложными полисахаридами (стрептококк, клебсиеллы). Жгутиковые Н-антигены являются белками, рибосомальные и протективные - комплексными соединениями белков и нуклеиновых кислот. Антигенами являются также эндо- и экзотоксины бактерий.

Знание антигенной структуры бактерий дало возможность получить ряд диагностических и лечебных сывороток, применяемых соответственно для определения видовой принадлежности микробов и терапии инфекционных

болезней.

Жгутиковые Н- антигены . Эти антигены входят в состав бактериальных жгутиков. Н-антиген представляет собой белок флагеллин. Он разрушается при нагревании, а после обработки фенолом сохраняет свои антигенные свойства.

Соматический О- антиген . Ранее полагали, что О- антиген заключен в содержимом клетки, ее соме, поэтому и назвали его соматическим антиге-ном. Впоследствии оказалось, что этот антиген связан с бактериальной клеточной стенкой. О- антиген грамотрицательных бактерий связан с ЛПС клеточной стенки. Детерминантными группами этого сложного комплек-сного антигена являются концевые повторяющиеся звенья полисахаридных цепей, присоединенные к ее основной части. Состав сахаров в детерминан-тных группах, так же как и их число, у разных бактерий неодинаковы. Чаше всего в них содержатся гексозы (галактоза, глюкоза, рамноза и др.), амино-сахар (N-ацетилглюкозамин). О-антиген термостабилен : он сохраняется при кипячении в течение 1-2 ч, не разрушается после обработки формалином и этанолом. При иммунизации животных живыми культурами, имеющими жгутики, образуются антитела к О- и Н-антигенам, а при иммунизации кипяченой культурой образуются антитела только к О-антигену.

К-антигены (капсульные). Эти антигены хорошо изучены у эшерихий и сальмонелл. Они, так же как О- антигены, тесно связаны с ЛПС клеточной стенки и капсулой, но в отличие от О- антигена содержат главным образом кислые полисахариды: глюкуроновую, галактуроновую и другие уроновые кислоты. По чувствительности к температуре К-антигены подразделяют на А-, В- и L-антигены. Наиболее термостабильными являются А-антигены, выдерживающие кипячение более 2 ч, В -антигены выдерживают нагревание при температуре 60 °С в течение часа, а L-антигены разрушаются при нагревании до 60°С. К-антигены располагаются более поверхностно, чем О- антигены, и часто маскируют последние. Поэтому для выявления О- антигенов необходимо предварительно разрушить К-антигены, что достигается кипячением культур. К капсульным антигенам относится так называемый Vi - антиген. Он обнаружен у брюшнотифозных и некоторых других энтеробактерий, обладающих высокой вирулентностью, в связи с чем данный антиген получил название антигена вирулентности. Капсульные антигены полисахаридной природы выявлены у пневмококков, клебсиелл и других бактерий, образующих выраженную капсулу. В отличие от группоспецифических О- антигенов они часто характеризуют антигенные особенности определенных штаммов (вариантов) данного вида, которые на этом основании подразделяются на серовары. У сибиреязвенных бацилл капсульный антиген состоит из полипептидов.

Антигены бактериальных токсинов . Токсины бактерий обладают полно-ценными антигенными свойствами в том случае, если они являются растворимыми соединениями белковой природы. Ферменты, продуцируемые бактериями, в том числе факторы патогенности, обладают свойствами полноценных антигенов. Серьезного внимания заслуживают протективные антигены, обладающие малой токсичностью и обеспечивающие выработку многочисленных блокирующих антител. Хорошими антигенами являются анатоксины, полученные из экзотоксинов путем обезвреживания их формалином.

Протективные антигены . Впервые обнаружены в экссудате пораженной ткани при сибирской язве. Они обладают сильно выраженными антигенными свойствами, обеспечивающими иммунитет к соответствующему инфекци-онному агенту. Протективные антигены образуют и некоторые другие микро-организмы при попадании в организм хозяина, хотя эти антигены не являют-ся их постоянными компонентами.

Антигены вирусов . В каждом вирионе любого вируса содержатся различ-ные антигены. Одни из них являются вирусспецифическими. В состав других антигенов входят компоненты клетки хозяина (липиды, углеводы), которые включаются в его внешнюю оболочку. Антигены простых вирионов связаны с их нуклеокапсидами. По своему химическому составу они принадлежат к рибонуклеопротеидам или дезоксирибонуклеопротеидам, которые являются растворимыми соединениями и поэтому обозначаются как S-антнгены (solutio-раствор). У сложноорганизованных вирионов одни антигенные компоненты связаны с нуклеокапсидами, другие - с гликопротеидами внешней оболочки. Многие простые и сложные вирионы содержат особые поверхностные V-антигены - гемагглютиннн и фермент нейраминидазу. Антигенная специфичность гемагглютинина у разных вирусов неодинакова. Данный антиген выявляется в реакции гемагглютинации или ее разновид-ности - реакции гемадсорбции. Другая особенность гемагглютинина проявляется в антигенной функции вызывать образование антител - антигемагглютининов и вступать с ними в реакцию торможения гемагглютинации (РТГА).



Вирусные антигены могут быть группоспецифическими, если они обнаружи-ваются у разных видов одного и того же рода или семейства, и типоспеци-фическими, присущими отдельным штаммам одного и того же вида. Эти различия учитываются при идентификации вирусов. Наряду с перечисленными антигенами в составе вирусных частиц могут присутствовать антигены клетки хозяина. Так, например, вирус гриппа, выращенный на аллантоисной оболочке куриного эмбриона, реагирует с антисывороткой, полученной к аллантоисной жидкости. Этот же вирус, взятый из легких инфицированных мышей, реагирует с антисывороткой к легким данных животных и не реагирует с антисывороткой к аллантоисной жидкости.

Гетерогенные антигены (гетероантигены). Это общие или межвидовые (сходные по специфичности) антигены. Впервые их открыл Дж. Форссман. Иммунизируя кролика водной вытяжкой из почек морской свинки, он вызвал образование в его сыворотке групповых антител, реагировавших с эритроцитами барана. Далее выяснилось, что форссмановский антиген является липополисахаридом и встречается в органах лошадей, кошек, собак, черепах. Общие антигены обнаружены у эритроцитов человека и гноеродных кокков, энтеробактерий, вирусов оспы, гриппа и других микроорганизмов. Групповая общность антигенной структуры у различных видов клеток получила название антигенной мимикрии . В случаях антигенной мимикрии иммунная система человека утрачивает способность быстро распознавать чужеродную метку и вырабатывать иммунитет, в результате чего патогенные микробы некоторое время могут беспрепятственно размножаться в организме. Антигенной мимикрией пытаются обосновать длительное выживание патогенных микробов в организме больного, или персистенцию, резидентное (устойчивое) микробоносительство и даже поствакцинальные осложнения.Общие антигены, обнаруженные у представителей различных видов микроорганизмов, животных и растений, называют гетерогенными. Например, гетерогенный антиген Форсмана содержится в белковых структурах органов морской свинки, в эритроцитах барана и сальмонеллах.

По специфичности антигены бактерий подразделяют на гомологичные - видо- и типоспецифические и гетерогенные - групповые, межвидовые.

Видовые и особенно типовые антигены отличаются высокой специфич­ностью. В ответ на их введение в организме животных вырабатываются только такие антитела, которые реагируют с антигенами определенного вида или разновидности микроба.

Антигены – это высокомолекулярные соединения. При попадании в организм вызывают иммунную реакцию и взаимодействуют с продуктами этой реакции: антителами и активированными лимфоцитами.

Классификация антигенов.

1. По происхождению:

1) естественные (белки, углеводы, нуклеиновые кислоты, бактериальные экзо– и эндотоксины, антигены клеток тканей и крови);

2) искусственные (динитрофенилированные белки и углеводы);

3) синтетические (синтезированные полиаминокислоты, полипептиды).

2. По химической природе:

1) белки (гормоны, ферменты и др.);

2) углеводы (декстран);

3) нуклеиновые кислоты (ДНК, РНК);

4) конъюгированные антигены (динитрофенилированные белки);

5) полипептиды (полимеры a-аминокислот, кополимеры глутамина и аланина);

6) липиды (холестерин, лецитин, которые могут выступать в роли гаптена, но, соединившись с белками сыворотки крови, они приобретают антигенные свойства).

3. По генетическому отношению:

1) аутоантигены (происходят из тканей собственного организма);

2) изоантигены (происходят от генетически идентичного донора);

3) аллоантигены (происходят от неродственного донора того же вида);

4) ксеноантигены (происходят от донора другого вида).

4. По характеру иммунного ответа:

1) тимусзависимые антигены (иммунный ответ зависит от активного участия Т-лимфоцитов);

2) тимуснезависимые антигены (запускают иммунный ответ и синтез антител В-клетками без Т-лимфоцитов).

Выделяют также:

1) внешние антигены; попадают в организм извне. Это микроорганизмы, трансплантированные клетки и чужеродные частицы, которые могут попадать в организм алиментарным, ингаляционным или парентеральным путем;

2) внутренние антигены; возникают из поврежденных молекул организма, которые распознаются как чужие;

3) скрытые антигены – определенные антигены (например, нервная ткань, белки хрусталика и сперматозоиды); анатомически отделены от иммунной системы гистогематическими барьерами в процессе эмбриогенеза; толерантность к этим молекулам не возникает; их попадание в кровоток может приводить к иммунному ответу.

Иммунологическая реактивность против измененных или скрытых собственных антигенов возникает при некоторых аутоиммунных заболеваниях.

Свойства антигенов:

1) антигенность – способность вызывать образование антител;

2) иммуногенность – способность создавать иммунитет;

3) специфичность – антигенные особенности, благодаря наличию которых антигены отличаются друг от друга.

Гаптены – низкомолекулярные вещества, которые в обычных условиях не вызывают иммунной реакции, но при связывании с высокомолекулярными молекулами приобретают иммуногенность. К гаптенам относятся лекарственные препараты и большинство химических веществ. Они способны вызывать иммунный ответ после связывания с белками организма.

Антигены или гаптены, которые при повторном попадании в организм вызывают аллергическую реакцию, называются аллергенами.

2. Антигены микроорганизмов

Инфекционные антигены – это антигены бактерий, вирусов, грибов, простейших.

Существуют следующие разновидности бактериальных антигенов:

1) группоспецифические (встречаются у разных видов одного рода или семейства);

2) видоспецифические (встречаются у различных представителей одного вида);

3) типоспецифические (определяют серологические варианты – серовары, антигеновары – внутри одного вида).

В зависимости от локализации в бактериальной клетке различают:

1) О – АГ – полисахарид; входит в состав клеточной стенки бактерий. Определяет антигенную специфичность липополисахарида клеточной стенки; по нему различают сероварианты бактерий одного вида. О – АГ слабо иммуногенен. Он термостабилен (выдерживает кипячение в течение 1–2 ч), химически устойчив (выдерживает обработку формалином и этанолом);

2) липид А – гетеродимер; содержит глюкозамин и жирные кислоты. Он обладает сильной адьювантной, неспецифической иммуностимулирующей активностью и токсичностью;

3) Н – АГ; входит в состав бактериальных жгутиков, основа его – белок флагеллин. Термолабилен;

4) К – АГ – гетерогенная группа поверхностных, капсульных антигенов бактерий. Они находятся в капсуле и связаны с поверхностным слоем липополисахарида клеточной стенки;

5) токсины, нуклеопротеины, рибосомы и ферменты бактерий.

Антигены вирусов:

1) суперкапсидные антигены – поверхностные оболочечные;

2) белковые и гликопротеидные антигены;

3) капсидные – оболочечные;

4) нуклеопротеидные (сердцевинные) антигены.

Все вирусные антигены Т-зависимые.

Протективные антигены – это совокупность антигенных детерминант (эпитопов), которые вызывают наиболее сильный иммунный ответ, что предохраняет организм от повторного инфицирования данным возбудителем.

Пути проникновения инфекционных антигенов в организм:

1) через поврежденную и иногда неповрежденную кожу;

2) через слизистые оболочки носа, рта, ЖКТ, мочеполовых путей.

Гетероантигены – общие для представителей разных видов антигенные комплексы или общие антигенные детерминанты на различающихся по другим свойствам комплексах. За счет гетероантигенов могут возникать перекрестные иммунологические реакции.

У микробов различных видов и у человека встречаются общие, сходные по строению антигены. Эти явления называются антигенной мимикрией.

Суперантигены – это особая группа антигенов, которые в очень малых дозах вызывают поликлональную активацию и пролиферацию большого числа Т-лимфоцитов. Суперантигенами являются бактериальные энтеротоксины, стафилококковые, холерные токсины, некоторые вирусы (ротавирусы).

Наиболее важными для изучения особенностей иммунного ответа являются антигены микроорганизмов — бактерий и вирусов.

В качестве антигенов у бактерий выступают белки, полисахариды, липополисахариды, липопротеиды, нуклеопротеиды и тому подобное. У микроорганизмов различают группоспецифические, видоспецифические и типоспецифические (вариантные) антигены. Первые встречаются у разных представителей одного рода или семьи; вторые — у разных представителей одного вида; третьи — у отдельных вариантов одного вида, в результате чего их разделяют на серовары (серологические варианты). Так, у Streptococcus pneumoniaе различают 80 сероваров.

Среди бактериальных антигенов выделяют Н, О, К и другие. Н-антигены — это жгутиковые антигены, которые получили название от Н-штаммов протея (от нем. Hauch — дыхание). Е. Вейль и А. Феликс наблюдали, что Н-штаммы дают на твердой питательной среде сплошной рост, а О-штаммы (от нем. Ohne hauch — без дыхания) растут в виде отдельных колоний.

Н-антиген представляет собой белок флагеллин. Он разрушается при нагревании (56-80°С), а после обработки фенолом сохраняет свои антигенные свойства.

О-антиген грамотрицательных бактерий связан с липополисахаридом клеточной стенки. Антигенной детерминантой ЛПС (липополисахарида) являются О-специфические боковые цепи, состав которых существенно различается не только у разных видов, но и в пределах одного вида у разных сероваров. В них содержатся гексозы (галактоза, глюкоза, рамноза т.п.) и N-ацетилглюкозамин.

Ранее этот антиген называли соматическим (расположенным в содержимом клетки, в соме), но это не совсем правильно, потому что О-специфические цепи немного выступают над поверхностью клетки. Полный соматический антиген в S-форме содержит полисахаридный гаптен. При переходе в R-форму соматический антиген теряет выраженную видовую специфичность, что связано с потерей специфического полисахарида.

Соматическими антигенами считают также липопротеиды. Как и ЛПС, они являются термостабильными антигенами, выдерживают нагревание до 80-100°С в течение 1-2 часов, не разрушаются после обработки формалином и спиртом.

При иммунизации животных живыми культурами, которые имеют жгутики, образуются антитела к О- и Н-антигенам, а при иммунизации кипяченой культурой — только к О-антигену.

К-антигены (капсульные) так же, как и О-антигены связаны с ЛПС клеточной стенки и капсулой, но зачастую содержат кислые полисахариды: глюкуроновую, галактуроновую и другие уроновые кислоты. По чувствительности к температуре К-антигены разделяют на А, В, М и L-антигены. Наиболее термостабильны А и М-антигены, которые могут выдерживать кипячение в течение 2 ч.

В-антигены выдерживают нагревание при температуре 60°С в течение часа, а L-антигены разрушаются при нагревании до 60°С. К-антигены часто маскируют О-антигены, поэтому для того, чтобы разрушить К-антигены, необходимо прокипятить культуру. Наиболее полно изучен капсульный Vi-антиген брюшнотифозной сальмонеллы и некоторых энтеробактерий. Из-за высокой вирулентность Vi-антиген назвали антигеном вирулентности.

Капсульные антигены обнаружены у Streptococcus pneumoniae (80 сероваров), Klebsiella pneumoniae (70 сероваров), в том числе возбудителей риносклеромы, у Bacillus anthracis (капсулы полипептидной природы). Антигены риккетсий, хламидий, микоплазм также связаны с поверхностными структурами клеток. Антигенными свойствами характеризуются также пили, фимбрии, мембраны, цитоплазма, ферменты, токсины.

У некоторых бактерий (Bacillus anthracis, Yersinia pestis, возбудителей коклюша, туляремии, бруцеллеза) найдены протективные антигены. Они характеризуются высокими защитными свойствами, вызывают синтез антител и могут использоваться для иммунизации.

У вирусов в роли антигенов могут выступать нуклеопротеиды (S-антигены, S — от лат. Solutio — растворимый), компоненты капсида, а также компоненты клеток хозяина (липиды, углеводы), адсорбированные на капсиде. Многие вирусы имеют в составе особый антиген — гемагглютинин, который способен склеивать эритроциты различных животных и человека. Реакция гемагглютинации под влиянием вирусных частиц состоит из двух стадий:

1) адсорбция вирусов на эритроцитах за счет взаимодействия с их гликопротеидными рецепторами;

2) слипание эритроцитов, на которых адсорбированы вирусы, можно наблюдать невооруженным глазом в виде «зонтиков» при постановке диагностической реакции гемагглютинации в плексиглазовых планшетах.

У вируса гриппа и других вирусов, которые продуцируют нейраминидазу, может происходить спонтанная диссоциация смеси вирусы-эритроциты, которая сопровождается освобождением вируса и в ряде случаев гемолизом эритроцитов. Это происходит за счет разрушения рецепторного мукоида эритроцита ферментом нейраминидазой.

Наличие вирусов в культуре можно обнаружить с помощью реакции гемадсорбции. Достаточно нанести эритроциты на поврежденную ткань или орган. Реакции гемагглютинации и гемадсорбции не являются иммунологическими, так как происходят без участия антител.

Но гемагглютинины вирусов способны вызывать образование специфических антител — антигемаглютининов и вступать с ними в реакцию торможения гемагглютинации (РТГА).

У вирусов также различают группоспецифические (в пределах рода или семьи) и типоспецифические (у разных штаммов в пределах одного вида) антигены. Эти различия учитываются при идентификации вирусов.

В связи с распространением аллергических заболеваний в последние годы интенсивно изучаются различные антигены (аллергены), которые могут вызвать неадекватный иммунный ответ с развитием воспалительной реакции (гиперчувствительность немедленного и замедленного типа).

Особая группа антигенов (чаще всего гаптены), которые вызывают реакции гиперчувствительности, — это пыльца растений, шерсть животных, волосы, перья, выделения насекомых, плесневые грибы и их споры, комнатная пыль, косметические, моющие, дезинфицирующие, лекарственные и другие средства. К пищевым аллергенам относятся рыба, молоко, яйца, орехи, томаты, земляника, цитрусовые. Сенсибилизацию к аллергенам могут вызвать амино-, нитро- и азосочетания. При диагностике используют кожные пробы, которые позволяют выявить активный аллерген для определенного лица.

Понравилась статья? Поделитесь ей