Контакты

Что называется мертвым пространством. Методы исследования и показатели внешнего дыхания

Лекция 8 . ЛЕГОЧНАЯ ВЕНТОЛЯЦИЯ И ЛЕГОЧНАЯ ДИФФУЗИЯ. ГАЗООБМЕН В ЛЕГКИХ И ТКАНЯХ

Основные вопросы : Значение дыхания для организма. Основные этапы процесса дыхания. Дыхательный цикл. Основные и вспомогательные дыхательные мышцы. Механизм вдоха и выдоха. Физиология дыхательных путей. Легочные объемы. Состав вдыхаемого, выдыхаемого и альвеолярного воздуха. Минутный объем дыхания и минутная вентиляция легких. Анатомическое и физиологическое дыхательное мертвое пространство. Типы легочной вентиляции. Напряжение газов, растворенных в крови. Парциальное давление газов в альвеолярном воздухе. Газообмен в тканях и легких.

Роль дыхательного тракта в речеобразовательной функции.

Совокупность процессов, которые обеспечивают поступление во внутреннюю среду О 2 , используемого для окисления органических веществ и удаление из организма СО 2 , образовавшегося в результате тканевого метаболизма, называют дыханием .

Выделяют три этапа дыхания :

1) внешнее дыхание,

2) транспорт газов,

3) внутреннее дыхание.

I этап - внешнее дыхание - это газообмен в легких, включающий в себя легочную вентиляцию и легочную диффузию.

Легочная вентиляция - это процесс обновления газового состава альвеолярного воздуха, обеспечивающий поступление в легкие О 2 и выведение из них СО 2 .

Легочная диффузия - это процесс обмена газов между альвеолярным воздухом и кровью легочных капилляров.

II этап - транспорт газов заключается в переносе кровью кислорода от легких к тканям и углекислоты - от тканей к легким.

III этап - внутреннее тканевое дыхание – это процесс обновления газового состава в тканях, состоящий из газообмена между кровью тканевых капилляров и тканями, а также из клеточного дыхания.

Полный дыхательный цикл состоит из трех фаз:

1) фаза вдоха (инспирация),

2) фаза выдоха (экспирация),

3) дыхательная пауза.

Изменения объема грудной полости в процессе дыхательного цикла обусловлены сокращением и расслаблением дыхательных мышц . Они подразделяются на инспираторные и экспираторные . Различают основные и вспомогательные инспираторные мышцы.

К основным инспираторным мышцам относятся:

1) диафрагма,

2) наружные косые межреберные и межхрящевые мышцы.

При глубоком форсированном дыхании в акте вдоха участвуют вспомогательные инспираторные мышцы :

1) грудино-ключично-сосцевидная,

2) мышцы грудной клетки - большая и малая грудные, трапециевидные, ромбовидные, мышца, поднимающая лопатку.

Легкие находятся внутри грудной клетки и отделены от ее стенок плевральной щелью - герметически замкнутой полостью, которая располагается между париетальным и висцеральным листками плевры.

Давление в плевральной полости ниже атмосферного. Отрицательное, по сравнению с атмосферным, давление в плевральной щели обусловлено эластической тягой легочной ткани, направленной на спадение легких. Увеличение объема грудной полости во время спокойного вдоха последовательно вызывает:

1) снижение давления в плевральной щели до -6 -9 мм рт ст,

2) расширение воздуха в легких и их растяжение,

3) снижение внутрилегочного давления до -2 мм рт ст по сравнению с атмосферным,

4) поступление воздуха в легкие по градиенту между атмосферным и альвеолярным давлением.

Уменьшение объема грудной полости во время спокойного выдоха последовательно вызывает:

1) повышение давления в плевральной щели с -6 -9 мм рт ст до -3 мм рт ст,

2) уменьшение объема легких за счет их эластической тяги,

3) повышение внутрилегочного давления до +2 мм рт ст по сравнению с атмосферным,

4) выход воздуха из легких в атмосферу по градиенту давления.

Объем воздуха, который находится в легких после максимально глубокого вдоха, называется общей емкостью легких (ОЕЛ).

У взрослого человека ОЕЛ составляет от 4200 до 6000 мл и состоит из двух частей:

1) жизненной емкости легких (ЖЕЛ) - 3500-5000 мл,

2) остаточного объема легких (ООЛ) - 1000-1200 мл.

Остаточный объем легких - это количество воздуха, которое остается в легких после максимально глубокого выдоха.

Жизненная емкость легких - это объем воздуха, который можно максимально выдохнуть после максимально глубокого вдоха.

ЖЕЛ состоит из трех частей:

1) дыхательный объем (ДО) - 400-500 мл,

2) резервный объем вдоха - около 2500 мл,

3) резервный объем выдоха - около 1500 мл.

Дыхательный объем - это количество воздуха, удаляемого из легких при спокойном выдохе после спокойного вдоха.

Резервный объем вдоха - это максимальное количество воздуха, которое можно дополнительно вдохнуть после спокойного вдоха.

Резервный объем выдоха - это максимальное количество воздуха, которое можно дополнительно выдохнуть после спокойного выдоха.

Резервный объем выдоха и остаточный объем составляют функциональную остаточную емкость (ФОЕ) - количество воздуха, остающееся в легких после спокойного выдоха (2000-2500 мл).

Легочная вентиляция характеризуется минутным объемом дыхания (МОД) - количеством воздуха, который вдыхается или выдыхается за 1 мин. МОД зависит от величины дыхательного объема и частоты дыхания: МОД = ДО х ЧД.

В обычных условиях человек дышит атмосферным воздухом, в составе которого содержится: О 2 - 21%, СО 2 - 0,03%, N 2 - 79%.

В выдыхаемом воздухе: О 2 - 16,0%, СО 2 - 4%, N 2 -79,7%.

В альвеолярном воздухе: О 2 - 14,0%, СО 2 - 5,5%, N 2 - 80%.

Различие в составе выдыхаемого и альвеолярного воздуха обусловлено смешиванием альвеолярного газа с воздухом дыхательного мертвого пространства .

Различают анатомическое и физиологическое мертвое пространство.

Анатомическое дыхательное мертвое пространство - это объем воздухопроводящих путей (от полости носа до бронхиол) в которых не происходит газообмена между воздухом и кровью.

Физиологическое дыхательное мертвое пространство (ФМП) - это объем всех участков дыхательной системы, в которых не происходит газообмен.

Количество воздуха, который участвует в обновлении альвеолярного газа за 1 мин, называется минутной вентиляцией легких (МВЛ). МВЛ определяется как произведение разности дыхательного объема легких и объема дыхательного мертвого пространства на частоту дыхания: МВЛ = (ДО - ДМП) х ЧД.

Перенос газов в воздухоносных путях происходит в результате конвекции и диффузии.

Конвективный способ переноса в воздухоносных путях обусловлен движением смеси газов по градиенту их общего давления.

В ходе ветвления воздухоносных путей их суммарное сечение значительно возрастает. Линейная скорость потока вдыхаемого воздуха по мере приближения к альвеолам постепенно падает со 100 см/с до 0,02 см/с. Поэтому к конвективному способу переноса газов присоединяется диффузионный обмен.

Диффузия газа - это пассивное движение молекул газа из области большего парциального давления или напряжения в зону меньшего.

Парциальное давление газа - это часть общего давления, которая приходится на какой-либо газ, смешанный с другими газами.

Парциальное давление газа, растворенного в жидкости, которое уравновешивается давлением этого же газа над жидкостью, называют напряжением газа .

Градиент давления О 2 направлен в альвеолы, где его парциальное давление ниже, чем во вдыхаемом воздухе. Молекулы СО 2 движутся в обратном направлении. Чем медленнее и глубже дыхание, тем интенсивнее идет внутрилегочная диффузия О 2 и СО 2 .

Постоянство состава альвеолярного воздуха и соответствие его потребностям метаболизма обеспечивается регуляцией вентиляции легких.

Различают десять основных типов вентиляции легких:

1) нормовентиляция,

2) гипервентиляция,

3) гиповентиляция,

4) эйпноэ,

5) гиперпноэ,

6) тахипноэ,

7) брадипноэ,

9) диспноэ,

10) асфиксия.

Нормовентиляция - это газообмен в легких, который соответствует метаболическим потребностям организма.

Гипервентиляция – это газообмен в легких, который превышает метаболические потребности организма.

Гиповентиляция - это газообмен в легких, который не достаточен для обеспечения метаболических потребностей организма.

Эйпноэ – это нормальная частота и глубина дыхания в покое, которые сопровождаются ощущением комфорта.

Гиперпноэ - это увеличение глубины дыхания выше нормы.

Тахипноэ - это увеличение частоты дыхания выше нормы.

Брадипноэ - это уменьшение частоты дыхания ниже нормы.

Диспноэ (одышка) - это недостаточность или затрудненность дыхания, которые сопровождаются неприятными субъективными ощущениями.

Апноэ - это остановка дыхания, обусловленная отсутствием физиологической стимуляции дыхательного центра.

Асфиксия - это остановка или угнетение дыхания, связанные с нарушением поступления воздуха в легкие вследствие непроходимости дыхательных путей.

Перенос О 2 из альвеолярного газа в кровь и СО 2 из крови в альвеолы происходит пассивно путем диффузии за счет разности парциального давления и напряжения этих газов по обе стороны аэрогематического барьера . Аэрогематический барьер образован альвеолокапиллярной мембраной , которая включает в себя слой сурфактанта, альвеолярный эпителий, две базальные мембраны и эндотелий кровеносного капилляра.

Парциальное давление О 2 в альвеолярном воздухе 100 мм рт ст. Напряжение О 2 в венозной крови легочных капилляров 40 мм рт ст. Градиент давления, составляющий 60 мм рт ст, направлен из альвеолярного воздуха в кровь.

Парциальное давление СО 2 в альвеолярном воздухе 40 мм рт ст. Напряжение СО 2 в венозной крови легочных капилляров 46 мм рт ст. Градиент давления, составляющий 6 мм рт ст, направлен из крови в альвеолы.

Малый градиент давления СО 2 связан с его высокой диффузионной способностью, которая в 24 раза больше, чем для кислорода. Это обусловлено высокой растворимостью углекислоты в солевых растворах и мембранах.

Время протекания крови через легочные капилляры составляет около 0,75 с. Этого достаточно для практически полного выравнивания парциального давления и напряжения газов по обе стороны аэрогематического барьера. При этом кислород растворяется в крови, а двуокись углерода переходит в альвеолярный воздух. Поэтому венозная кровь превращается здесь в артериальную.

Напряжение О 2 в артериальной крови 100 мм рт ст, а в тканях менее 40 мм рт ст. При этом градиент давления, составляющий более 60 мм рт ст, направлен из артериальной крови в ткани.

Напряжение СО 2 в артериальной крови 40 мм рт ст, а в тканях - около 60 мм рт ст. Градиент давления, составляющий 20 мм рт ст, направлен из тканей в кровь. Благодаря этому артериальная кровь в тканевых капиллярах превращается в венозную.

Таким образом, звенья газотранспортной системы характеризуются встречными потоками дыхательных газов: О 2 перемещается из атмосферы к тканям, а СО 2 - в обратном направлении.

Роль дыхательного тракта в речеобразовательной функции

Человек может волевым усилием изменять частоту и глубину дыхания и даже на время остановить его. Это особенно важно в связи с тем, что дыхательный тракт используется человеком для осуществления речевой функции.

У человека отсутствует специальный звукообразующий речевой орган. К звукопроизводящей функции приспособлены органы дыхания – легкие, бронхи, трахея и гортань, которые вместе с органами ротового отдела формируют речевой тракт .

Воздух, проходящий во время выдоха по речевому тракту, заставляет вибрировать голосовые связки, расположенные в гортани. Вибрация голосовых связок является причиной звука, который называется голосом . Высота голоса зависит от частоты колебания голосовых связок. Сила голоса определяется амплитудой колебаний, а его тембр определяется функцией резонаторов – глотки, полости рта, полости носа и его придаточных пазух.

В функции формирование речевых звуков произношении , участвуют: язык, губы, зубы, твердое и мягкое небо. Дефекты речевой звукоформирующей функции – дислалии , могут быть связаны с врожденными и приобретенными аномалиями органов ротового отдела – расщелинами твердого и мягкого неба, с аномалиями формы зубов и их расположения в альвеолярных дугах челюстей, полными или частичными адентиями. Дислалии появляются также при нарушении секреторной функции слюнных желез, жевательной и мимической мускулатуры, височно-нижнечелюстных суставов.

Легочные объемы и емкости

Вентиляция легких зависит от глубины дыхания (дыхательного объема) и частоты дыхательных движений. Оба этих параметра могут варьировать в зависимости от потребностей организма.

Легочные объемы. В покое дыхательный объем мал по сравнению с общим объемом воздуха в легких. Таким образом, человек может как вдохнуть, так и выдохнуть большой дополнительный объем воздуха. Однако даже при самом глубоком выдохе в альвеолах и воздухоносных путях легких остается некоторое количество воздуха. Для того чтобы количественно описать все эти взаимоотношения, общий легочный объем делят на несколько компонентов ; при этом под емкостью понимают совокупность двух или более компонентов (рис. 21.8).

1. Дыхательный объем – количество воздуха, которое человек вдыхает и выдыхает при спокойном дыхании.

2. Резервный объем вдоха – количество воздуха, которое человек может дополнительно вдохнуть после нормального вдоха.

3. Резервный объем выдача–количество воздуха, которое человек может дополнительно выдохнуть после спокойного выдоха.

4. Остаточный объем – количество воздуха, остающееся в легких после максимального выдоха.

5. Жизненная емкость легких –наибольшее количество воздуха, которое можно выдохнуть после максимального вдоха. Равно сумме 1, 2 и 3.

Рис. 21.8. Легочные объемы и емкости. Величина жизненной емкости легких и остаточный объем (в правой части рисунка) зависят от пола и возраста

6. Емкость вдоха–максимальное количество воздуха, которое можно вдохнуть после спокойного выдоха. Равно сумме 1 и 2.

7. Функциональная остаточная емкость–количество воздуха, остающееся в легких после спокойного выдоха. Равно сумме 3 и 4.

8. Общая емкость легких – количество воздуха, содержащееся в легких на высоте максимального вдоха. Равно сумме 4 и 5. Из всех этих величин наибольшее значение, кроме дыхательного объема, имеют жизненная емкость легких и функциональная остаточная емкость.

Жизненная емкость легких. Жизненная емкость легких (ЖЕЛ) является показателем подвижности легких и грудной клетки. Несмотря на название, она не отражает параметров дыхания в реальных («жизненных») условиях, так как даже при самых высоких потребностях, предъявляемых организмом к дыхательной системе, глубина дыхания никогда не достигает максимального из возможных значений.

С практической точки зрения нецелесообразно устанавливать «единую» норму для ЖЕЛ, так как эта величина зависит от ряда факторов, в частности от возраста, пола, размеров и положения тела и степени тренированности.

Как видно из рис. 21.9, жизненная емкость легких с возрастом (особенно после 40 лет) уменьшается. Это связано со снижением эластичности легких и подвижности грудной клетки. У женщин ЖЕЛ в среднем на 25% меньше, чем у мужчин. Совершенно очевидно, что ЖЕЛ зависит от роста, так как величина грудной клетки

пропорциональна остальным размерам тела. У молодых людей ЖЕЛ можно вычислить с помощью следующего эмпирического уравнения :

ЖЕЛ (л) = 2,5 х рост (м). (1)

Таким образом, у мужчин ростом 180 см жизненная емкость легких будет составлять 4,5 л. ЖЕЛ зависит от положения тела: в вертикальном положении она несколько больше, чем в горизонтальном (это связано с тем, что в вертикальном положении в легких содержится меньше крови). Наконец, жизненная емкость легких зависит от степени тренированности. У людей, занимающихся такими видами спорта, где необходима выносливость, ЖЕЛ значительно выше, чем у нетренированных людей. Она особенно велика у пловцов и гребцов (до 8 л), так как у этих спортсменов сильно развиты вспомогательные дыхательные мышцы (большие и малые грудные). Определение жизненной емкости легких имеет значение главным образом для диагностики.

Функциональная остаточная емкость. Физиологическая роль функциональной остаточной емкости (ФОЕ) состоит в том, что благодаря наличию этой емкости в альвеолярном пространстве сглаживаются колебания концентраций O 2 и СO 2 , обусловленные различиями в их содержании во вдыхаемом и выдыхаемом воздухе. Если бы атмосферный воздух поступал непосредственно в альвеолы, не смешиваясь с воздухом, уже содержащимся в легких, то содержание O 2 и СO 2 в альвеолах претерпевало бы

Рис. 21.9. Кривые зависимости общей и жизненной емкости легких и остаточного объема от возраста для людей среднего роста

колебания в соответствии с фазами дыхательного цикла. Однако этого не происходит: вдыхаемый воздух смешивается с воздухом, содержащимся в легких, и, поскольку ФОЕ в покое в несколько раз больше дыхательного объема, изменения состава альвеолярного воздуха относительно невелики.

Величина ФОЕ, равная сумме остаточного объема и резервного объема выдоха, зависит от ряда факторов. В среднем у молодых мужчин в горизонтальном положении она составляет 2,4 л, а у пожилых–3,4 л . У женщин ФОЕ примерно на 25% меньше.

Измерение легочных объемов

Объемы вдыхаемого и выдыхаемого воздуха можно непосредственно измерить при помощи спирометра или пневмотахографа. Что касается остаточного объема и функциональной остаточной емкости, то их можно определить лишь косвенно.

Спирометрия. Спирометрами называют приборы, способные вмещать различные количества воздуха при постоянном давлении (рис. 21.11). Наиболее распространен водный спирометр. Этот прибор представляет собой цилиндр, помещенный кверху дном в резервуар с водой. Воздух, попавший в этот цилиндр, не сообщается с внешней средой. Цилиндр уравновешен противовесом. Воздухоносные пути исследуемого соединяют посредством широкой трубки, снабженной загубником, с пространством внутри цилиндра. Во время выдоха объем воздуха в цилиндре увеличивается, и он всплывает; при вдохе цилиндр погружается. Эти изменения объема могут быть измерены при помощи откалиброванной шкалы или зарегистрированы посредством писчика на барабане кимографа (в последнем случае получают так называемую спирограмму).

Пневмотахография. Если нужно исследовать дыхание в течение длительного времени, то значительно удобнее пользоваться так называемыми спирометрами открытого типа. С их помощью регистрируют не сами дыхательные объемы, а объемную скорость воздушной струи (рис. 21.10). Для этого используют пневмотахографы– приборы, основной частью которых служит широкая трубка с малым аэродинамическим сопротивлением. При прохождении воздуха через трубку между ее началом и концом создается небольшая разность давлений, которую можно зарегистрировать при помощи манометрических датчиков. Эта разность давлений прямо пропорциональна объемной скорости воздушной струи, т. е. количеству воздуха, проходящего через поперечное сечение трубки в единицу времени. Кривая изменений этой объемной скорости называется пневмотахограммой. На основе пневмотахограммы, представляющей собой запись dV/dt, путем интегрирования можно получить искомый объем воздуха V:

V =∫Δ V / Δt Δt

В большинстве пневмотахографов имеется электронный интегрирующий блок, поэтому одновременно с пневмотахограммой непосредственно записывается кривая дыхательных объемов (спирограмма).

Измерение функциональной остаточной емкости (ФОЕ).

Поскольку ФОЕ–что количество воздуха, остающееся в легких в конце выдоха, ее можно измерить только непрямыми методами. Принцип таких методов заключается в том, что либо в легкие вводят инородный газ типа гелия (метод разведения), либо вымывают содержащийся в альвеолярном воздухе азот, заставляя испытуемого дышать чистым кислородом (метод вымывания). И в том и в другом случае искомый объем вычисляют, исходя из конечной концентрации газа .

Рис. 21.10. Принцип действия пневмотахографа. Разность давлений между двумя концами трубки, обладающей определенным аэродинамическим сопротивлением и соединенной с загубником, пропорциональна объемной скорости тока воздуха V. Кривая изменений этой скорости называется пневмотахограммой, а кривая изменений интеграла этой скорости во времени, т.е. объема дыхания, представляет собой спирограмму

Рис. 21.11. Принцип определения функциональной остаточной емкости по методу разведения гелия. Вверху– аппаратура и дыхательная система исследуемого в исходном состоянии; гелий (красные точки) находится только в спирометре, где содержание его составляет 10 об.%. Внизу– полное и равномерное распределение гелия между легкими (функциональная остаточная емкость) и спирометром после окончания исследования;

концентрация гелия равна 5 об.%

На рис. 21.11 проиллюстрирован метод разведения гелия. Спирометр закрытого типа заполняют газовой смесью. Пусть общий объем смеси равен 3 л, а объемы O 2 и He-2,7 и 0,3 л соответственно. При этом исходное содержание (фракция) гелия F He 1 составит 0,1 мл на 1л смеси. После спокойного выдоха испытуемый начинает дышать из спирометра, и в результате молекулы гелия равномерно распределяются между объемом легких, равном ФОЕ, и объемом спирометра Vсп. Гелий очень медленно диффундирует через ткани, и переходом его из альвеол в кровь можно пренебречь. Через несколько минут, когда содержание гелия в легких и спирометре выравнивается, измеряют это содержание (F He 2) при помощи специальных приборов. Предположим, что в нашем случае оно составляет 0,05 мл Не на 1 мл смеси. При вычислении ФОЕ исходят из закона сохранения вещества: общее количество гелия, равное произведению объема V и концентрации F, должно быть одинаковым в исходном состоянии и после перемешивания:

V сп F He 1 = V сп+ ФОЕ F He 2 (2)

Подставляя в это уравнение приведенные выше данные, можно рассчитать ФОЕ:

ФОЕ = V сп (F He 1 F He 2 )/ F He 2 = 3 (0.1–0.05)/0.05 = 3 л. (3)

При использовании метода вымывания азота испытуемый после спокойного выдоха в течение нескольких минут дышит чистым кислородом. Выдыхаемый воздух поступает в спирометр, и вместе с ним в спирометр переходят молекулы азота, содержащегося в легких. Зная объем выдыхаемого воздуха, начальное содержание N 2 ; в легких и конечное содержание N 2 в спирометре, можно вычислить ФОЕ, используя уравнение, аналогичное (3).

При практическом применении этих методов необходимо вносить некоторые поправки . Кроме того, недостатком обоих методов является то, что у больных с неравномерной вентиляцией некоторых участков легких для полного разведения или вымывания газов требуется очень большой период времени. В связи с этим в последнее время получило широкое распространение измерение ФОЕ при помощи интегрального плетизмографа .

Анатомическое и функциональное мертвое пространство

Анатомическое мертвое пространство. Анатомическим мертвым пространством называют объем воздухоносных путей, потому что в них не происходит газообмена. Это пространство включает носовую и ротовую полости, глотку, гортань, трахею, бронхи и бронхиолы. Объем мертвого пространства зависит от роста и положения тела. Приближенно можно считать, что у сидящего человека объем мертвого пространства (в миллилитрах) равен удвоенной массе тела (в килограммах). Таким образом, у взрослых он равен около 150 мл. При глубоком дыхании он возрастает, так как при расправлении грудной клетки расширяются и бронхи с бронхиолами.

Измерение объема мертвого пространства. Экспираторный (дыхательный) объем (Vд) состоит из двух компонентов – объема воздуха, поступающего из мертвого пространства (Vмп), и объема воздуха из альвеолярного пространства (Vа) Показатели, относящиеся к альвеолярному воздуху, обозначают также с помощью прописной буквы (А) в нижнем индексе, чтобы отличить их от аналогичных показателей артериальной крови (см. Дж. Уэст «Физиология дыхания. Основы» .М.: Мир, 1988).

Vд = Vмп + Vа (4)

Для изучения функции легких важно измерить оба этих компонента отдельно. Как и для определения функциональной остаточной емкости, здесь используют непрямые методы. Они основаны на том, что содержание дыхательных газов (O 2 и СO 2) в воздухе из мертвого и из альвеолярного пространства различно. Содержание газов в воздухе мертвого пространства аналогично таковому в воздухе, поступившем при вдохе (инспирации) (Fи).

V д F э = V мп F и + V а F а (5)

Подставляя выражение для Vа из уравнения (4) и сделав преобразования, получаем

V мп/ V л= (F э – F а)/ (F и – F а) (6)

Это равенство, называемое уравнением Бора, справедливо для любого дыхательного газа. Однако для СO 2 его можно упростить, так как содержание этого газа во вдыхаемом воздухе Fи co 2 близко к нулю

V мп / V д =(F а co2 – F э co2 )/ F а co2 (7)

Отношение объема мертвого пространства к экспираторному объему можно вычислить с помощью уравнений (6) и (7). Значения содержания газов для фракций, представленных в правой части уравнения, можно определить путем газового анализа (при определении газов в альвеолярном воздухе возникают некоторые трудности). Пусть газовый анализ дал следующие величины: F а co 2 = 0,056 мл СO 2 и F э co 2 = 0,04 мл СO 2 ; на 1 мл смеси. Тогда Vмп/Vд = 0,3, т. е. объем мертвого пространства составляет 30% экспираторного объема.

Функциональное мертвое пространство. Под функциональным (физиологическим) мертвым пространством понимают все те участки дыхательной системы, в которых не происходит газообмена. К функциональному мертвому пространству в отличие от анатомического относятся не только воздухоносные пути, но также и те альвеолы, которые вентилируются, но не перфузируются кровью. В таких альвеолах газообмен невозможен, хотя их вентиляция и происходит. В здоровых легких количество подобных альвеол невелико, поэтому в норме объемы анатомического и функционального мертвого пространства практически одинаковы. Однако при некоторых нарушениях функции легких, когда легкие вентилируются и снабжаются кровью неравномерно, объем второго может оказаться значительно больше объема первого.

Измерение вентиляции

Минутный объем дыхания. Минутный объем дыхания, т. е. объем воздуха, вдыхаемого (или выдыхаемого) за 1 мин, равен по определению произведению дыхательного объема и частоты дыхательных движений. Экспираторный объем обычно меньше инспираторного, так как поглощение O 2 превышает величину выделения СO 2 (дыхательный коэффициент меньше 1. Для большей точности следует различать инспираторный и экспираторный минутные объемы дыхания. При расчетах вентиляции принято исходить из экспираторных объемов, помечаемых «э». Экспираторный минутный объем дыхания Vэ , составляет

V э= Va f (8)

(точка над символом V, означает, что речь идет об «объеме за единицу времени», но не о производной; Va–экспираторный дыхательный объем; f–частота дыхательных движений).

Частота дыхательных движений у взрослого человека в покое в среднем равна 14/мин. Она может претерпевать значительные колебания (от 10 до 18 за 1 мин). Частота дыхательных движений выше у детей (20–30/мин); у грудных детей она составляет 30–40/мин, а у новорожденных– 40–50/мин .

Из уравнения (8) следует, что у взрослого человека при дыхательном объеме 0,5 л и частоте дыханий 14/мин минутный объем дыхания равен 7 л/мин. При физической нагрузке в соответствии с увеличением потребности в кислороде повышается и минутный объем дыхания, достигая в условиях максимальной нагрузки 120 л/мин. Хотя минутный объем дыхания дает некоторую информацию о вентиляции легких, он ни в коей мере не определяет эффективность дыхания. Определяющим фактором служит та часть минутного объема дыхания, которая поступает в альвеолы и участвует в газообмене.

Альвеолярная вентиляция и вентиляция мертвого пространства. Часть минутного объема дыхания V э , достигающая альвеол, называется альвеолярной вентиляцией V a ; остальная его часть составляет вентиляцию мертвого пространства V мл

V э= Va + V мл (9)

Вентиляция любого отдела равна произведению объема воздуха, проходящего через этот отдел при каждом дыхательном цикле, и частоты дыхательных движений (V = V f). Приведем значения параметров, определяющих общую вентиляцию легких у здорового взрослого человека в покое. Дыхательный объем V, состоит на 70% из альвеолярного объема Vа и на 30% из объема мертвого пространства Vмл . Следовательно, если Vэ= 500 мл, то

Va = 350 мл, a Vмл =150 мл. Если частота дыхательных движений равна 14/мин, то общая вентиляция легких составит 7 л/мин, альвеолярная вентиляция – 5 л/мин, а вентиляция мертвого пространства –2 л/м.

Альвеолярная вентиляция служит показателем эффективности дыхания в целом. Именно от этой величины зависит газовый состав, поддерживаемый в альвеолярном пространстве. Что касается минутного объема, то он лишь в незначительной степени отражает эффективность вентиляции легких. Так, если минутный объем дыхания нормальный (7 л/мин), но дыхание частое и поверхностное (V, = 0,2 л, f = 35/мин), то вентилироваться будет главным образом мертвое пространство, в которое воздух поступает раньше, чем в альвеолярное; в этом случае вдыхаемый воздух почти не будет достигать альвеол. Такое дыхание иногда наблюдается при циркуляторном шоке и представляет собой крайне опасное состояние. Поскольку объем мертвого пространства постоянен, альвеолярная вентиляция тем больше, чем глубже дыхание.

Искусственное дыхание

Остановка дыхания. Остановка дыхания независимо от вызвавшей ее причины смертельно опасна. С момента остановки дыхания и кровообращения человек находится в состоянии клинической смерти. Как правило, уже через 5–10 мин недостаток O 2 и накопление СO 2 приводят к необратимым повреждениям клеток жизненно важных органов, в результате чего наступает биологическая смерть. Если за этот короткий срок провести реанимационные мероприятия, то человека можно спасти .

К нарушению дыхания могут привести самые разные причины, в том числе закупорка дыхательных путей, повреждение грудной клетки, резкое нарушение газообмена и угнетение дыхательных центров вследствие повреждения головного мозга или отравления. В течение некоторого времени после внезапной остановки дыхания кровообращение еще сохраняется: пульс на сонной артерии определяется в течение 3–5 мин после последнего вдоха. В случае же внезапной остановки сердца дыхательные движения прекращаются уже через 30–60 с.

Обеспечение проходимости дыхательных путей. У человека в бессознательном состоянии утрачиваются защитные рефлексы, благодаря которым в норме воздухоносные пути свободны. В этих условиях рвота или носовое либо горловое кровотечение может привести к закупорке дыхательных путей (трахеи и бронхов). Поэтому для восстановления дыхания в первую очередь необходимо быстро очистить рот и глотку. Однако даже без этих осложнений воздухоносные пути человека, лежащего в бессознательном состоянии на спине, могут быть перекрыты языком в результате западения нижней челюсти. Чтобы предупредить перекрывание воздухоносных путей языком, запрокидывают голову больного и смещают его нижнюю челюсть кпереди.

Искусственное дыхание методом вдувания. Для проведения искусственного дыхания без помощи специальных устройств наиболее эффективен способ, при котором реаниматор вдувает воздух в нос или рот пострадавшего, т. е. непосредственно в его дыхательные пути (рис. 21.12).

При дыхании «рот в нос» реаниматор кладет ладонь на лоб пострадавшего в области границы роста волос и запрокидывает его голову. Второй рукой реаниматор выдвигает нижнюю челюсть пострадавшего и закрывает ему рот, надавливая большим пальцем на губы. Сделав глубокий вдох, реаниматор плотно приникает ртом к носу пострадавшего и производит инсуфляцию (вдувание воздуха в дыхательные пути). При этом грудная клетка пострадавшего должна приподняться. Затем реаниматор освобождает нос пострадавшего, и происходит пассивный выдох под действием силы тяжести грудной клетки и эластической тяги легких. При этом следует следить за тем, чтобы грудная клетка возвращалась в исходное положение.

При дыхании «рот в рот» реаниматор и пострадавший занимают то же положение: одна ладонь реаниматора лежит на лбу больного, другая–под его нижней челюстью. Реаниматор приникает ртом ко рту пострадавшего, закрывая при этом своей щекой его нос. Можно также

Рис. 21.12. Искусственное дыхание по способу, «рот в нос»

сдавить ноздри пострадавшего при помощи большого и указательного пальцев руки, лежащей на лбу. При этом способе искусственного дыхания также следует следить за движениями грудной клетки при инсуфляции и выдохе.

Какой бы способ искусственного дыхания ни использовался, прежде всего необходимо произвести в быстром темпе 5–10 инсуфляции, с тем чтобы как можно быстрее ликвидировать недостатокO 2 и избыток СO 2 в тканях. После этого инсуфляции следует производить с интервалом 5 с. При соблюдении этих правил насыщение артериальной крови пострадавшего кислородом почти постоянно превышает 90% .

Искусственное дыхание при помощи специальных устройств. Существует простое приспособление, при помощи которого (если оно находится под рукой) можно производить искусственное дыхание. Оно состоит из маски, герметично накладываемой на лицо больного, клапана и мешка, который вручную сжимается, а затем расправляется. При наличии баллона с кислородом его можно присоединить к этому устройству, для того чтобы повысить содержание O 2 во вдыхаемом воздухе.

При широко используемом в настоящее время ингаляционном наркозе воздух из дыхательного аппарата поступает в легкие через эндотрахеальную трубку. В этом случае можно подавать воздух в легкие при повышенном давлении, и тогда вдох будет происходить в результате раздувания легких, а выдох–пассивно. Можно также управлять дыханием, создавая колебания давления, чтобы оно было попеременно выше и ниже атмосферного (при этом среднее давление должно быть равно атмосферному). Поскольку отрицательное давление в грудной полости способствует возврату венозной крови к сердцу, предпочтительнее применять искусственное дыхание в режиме изменяющегося давления.

Применение дыхательных насосов или ручных дыхательных мешков необходимо при операциях с использованием миорелаксантов , устраняющих рефлекторное напряжение мышц. Эти вещества «выключают» и дыхательные мышцы, поэтому вентиляция легких возможна лишь за счет искусственного дыхания.

В случае если у больного имеется хроническое нарушение внешнего дыхания (например, при детском спинальном параличе), вентиляцию легких можно поддерживать с помощью так называемого боксового респиратора («железное легкое»). При этом туловище больного, находящееся в горизонтальном положении, помещают в камеру, оставляя свободной лишь голову. Для инициации вдоха давление в камере понижают, чтобы внутригрудное давление стало выше, чем давление во внешней среде.

Вдыхаемый воздух содержит настолько малое количество двуокиси углерода, что им можно пренебречь. Таким образом, вся двуокись углерода поступает в выды­хаемый газ из альвеол, куда она попадает из капилляров малого круга кровообраще­ния. Во время выдоха "загруженный" двуокисью углерода альвеолярный газ разво­дится газом мертвого пространства. Это приводит к падению концентрации двуоки­си углерода в выдыхаемом газе по сравнению с таковой в альвеолярном (мертвое пространство понимается здесь как физиологическое, а не анатомми^™^ ьг~.....

Рис. 3-2. Типы мертвого пространства. (А) Л патом и ч ее кос. В обеих единицах кровоток соответ­ствует распределении) вентиляции. Единственными областями, где газообмен не происходит, явля­ются проводящие ВП (затушевано). Отсюда все мертвое пространство в этой модели является анатомическим. Кровь легочных вен полностью оксигенирована. (Б) Физиологическое. В одной единице вентиляция сопряжена с кровотоком (правая единица), в другой (левая единица) кровоток отсутствует. В этой модели физиологическое мертвое пространство включает анатомическое и пспсрфузируемую область легких. Кровь легочных вен оксигепирована частично.

зуя простое уравнение равновесия масс можно рассчитать отношение физиологичес­кого мертвого пространства к дыхательному объему, Vl)/vt.

Общее количество двуокиси углерода (СО 2) в дыхательной системе в любой момент времени представляет собой произведение первоначального объема, в кото­ром содержался СО 2 (альвеолярный объем), и концентрации СО 2 в альвеолах.

Альвеолы содержат смесь газов, включающую О 2 , СО 2 , N 2 и водяной пар. Каж­дый из них обладает кинетической энергией, создавая тем самым давление (парци­альное давление). Альвеолярная концентрация СО 2 рассчитывается как парциальное давление альвеолярного СО 2 , деленное на сумму парциальных давлений газов и во­дяного пара в альвеолах (гл. 9). Поскольку сумма парциальных давлений в альвеолах равна барометрическому давлению, альвеолярное содержание СО 2 может быть рас­считано как:

расо Альвеолярное содержание СО 2 = vax------- 2 - ,

где: va - альвеолярный объем,

РАСО 2 - парциальное давление СО 2 в альвеолах, Рв - барометрическое давление.

Общее количество СО 2 остается тем же самым после того, как альвеолярный СО 2 смешается с газом мертвого пространства. Поэтому, количество СО 2 , выделяе­мое при каждом выдохе, может быть рассчитано как:

Vrx^L-VAx*^,

где: РЁСО 2 - среднее парциальное давление СО 2 в выдыхаемом газе. Уравнение может быть записано более просто как:

VT х РЁСО? = VA x РАС0 2 .

Уравнение показывает, что количество СО 2> выделяемое при каждом выдохе и определяемое как произведение дыхательного объема и парциального давления СО 2 в выдыхаемом газе, равно количеству СО 2 в альвеолах. СО 2 не теряется и не добав­ляется к газу, поступающему в альвеолы из легочного кровообращения; просто пар­циальное давление СО 2 в выдыхаемом воздухе (РИс() 2) устанавливается на новом уровне в результате разведения газом физиологического мертвого пространства. Заменяя VT в уравнении на (VD + va), получаем:

(VD + va) х РЁСО 2 = va х Рдсо 2 .

Преобразование уравнения заменой Уд на (Ут - У D) дает:

УР = УТХ РАС °*- РЁС °*. ГЗ-8]

Уравнение может быть выражено в более общем виде:

vd РАСО 2 -РЁсо 2

= -----^----------l

Уравнение , известное как уравнение Бора, показывает, что отношение мер­твого пространства к дыхательному объему может быть рассчитано как частное от деления разности РС() 2 альвеолярного и выдыхаемого газов на альвеолярное РС() 2 . Поскольку альвеолярное РС() 2 практически совпадает с артериальным Рсо 2 (РаС() 2), Vo/Ут может быть рассчитано с помощью одновременного измерения Рсо 2 в про­бах артериальной крови и выдыхаемого газа.

Как пример для расчета, рассмотрим данные здорового человека, чья минутная вентиляция (6 л/мин) достигалась при дыхательном объеме 0.6 л и частоте дыхания 10 дых/мин. В пробе артериальной крови РаС() 2 равнялось 40 мм рт. ст., а в пробе выдыхаемого газа РЕСО, - 28 мм рт. ст. Вводя эти величины в уравнение , получаем:

У°Л°_--?в = 0.30 VT 40

Мертвое пространство эо

Отсюда У D составляет (0.30 х 600 мл) или 180 мл, а У А равняется (600 iv./i 180 мл) или 420 мл. У любого взрослого здорового человека У 0/У"Г колеблется от 0.30 до 0.35.

Влияние вентиляторного паттерна на vd/vt

В предыдущем примере дыхательный объем и частота дыхания были точно у ка заны, что позволило вычислить VD и УА после того, как была определена вел ичи на УD/VT. Рассмотрим что произойдет, когда здоровый человек массой 70 кг" на ки ь -зует" три различных дыхательных паттерна для поддержания одной и топ же минут­ной вентиляции (рис. 3-3).

На рис. 3-ЗА VE составляет 6 л/мин, Ут - 600 мл и f - 10 дых/мин. У человека массой 70 кг объем мертвого пространства равен примерно 150 мл. Кате было отмече­но ранее, 1 мл мертвого пространства приходится на один фунт веса тела. Отсюда VI) равняется 1500 мл (150x10), va -4500 мл (450x10), a VD/VT- 150/600 пли 0.25.

Испытуемый увеличил частоту дыхания до 20 дых/мин (рис, 3-ЗБ). Нслн \поддерживалась на прежнем уровне 6 л/мин, то Ут будет равен 300 мл. П;>и У г> ь 150 мл vd и УА достигают 3000 мл/мин. УD/УТ увеличится до 150/300 или 0.5. Это г частый поверхностный дыхательный паттерн представляется неэффективным с точ

Рис. 3-3. Влияние дыхательного паттерна на объем мертвого пространства, неличину альнеспярпои иептиляции и Vn/V"r. Мертвое пространство обозначено затушеванной площадь!") В каждом слу­чае минутная вентиляция составляет 6 л/мин; дыхательная система показала i> коип.е идг.ха. (А) Дыхательный объем равен 600 мл, частота дыхания - 10 дых/мин. (Б) Дыхательный объгм;;,иик-уменьшен, а частота дыхания вдвое увеличена. (В) Дыхательный объем удвоен, а частота ди\аш<ч

11..,..,.,.,^, .,., ., м. г, 4 Mitii\rrii4u kpim и MvnilHI ОГТЛГКМ ПОСТОЯННОМ, OT".IOMICilMc М"Ч"

ки зрения выведения СО 2 , поскольку половина каждого вдоха вентилирует мертво пространство.

Наконец, VT увеличился до 1200мл, а частота дыхания снизилась д 5 дых/мин (рис. 3-3 В).

Vli! осталась прежней -- 6 л/мин, vd понизилась д< 750 мл/мин, a va повысилась до 5250 мл/мин. VD/VT уменьшилось до 150/1201 или 0.125. Во всех трех примерах общая вентиляция оставалась без изменений, од нако заметно отличалась альвеолярная вентиляция. Из дальнейшего обсуждение станет ясно, что альвеолярная вентиляция является определяющим фактором ско рости выделения СО 2 .

Отношение между альвеолярной вентиляцией и скоростью образования СО 2

Скорость образования СО 2 (Vco 2) у здорового человека массой 70 кг в состоя­нии покоя составляет около 200 мл в 1 мин. Система регуляции дыхания "установ­лена" на поддержание РаС() 2 на уровне 40 мм рт. ст. (гл. 16). В устойчивом состоянии скорость, с которой СО 2 выводится из организма, равна скорости ее образования. Отношение между РаС() 2 , VCO 2 и VA приведено ниже:

VA = Kx-^- l

где: К - константа, равная 0.863; VA выражена в системе BTPS, a Vco 2 -в систе­ме STPD (приложение 1, с. 306).

Уравнение показывает, что при постоянной скорости образования дву­окиси углерода РаСО- изменяется обратно пропорционально альвеолярной вентиля­ции (рис. 3-4). Зависимость РЛС() 2 , а отсюда и РаС() 2 (тождество которых обсужда­ется в гл. 9 и 13) от va можно оценить с помощью рис. 3-4. В действительности изменения Рсо 2 (альвеолярного ил и артериального) определяются отношением меж­ду \/д и vk,t. e. величиной VD/VT (раздел "Расчет объема физиологического мер­твого пространства"). Чем выше VD/VT, тем большая Vi<; необходима для измене­ния Уд и РаСО;,.

Отношение между альвеолярной вентиляцией, альвеолярным Ро 2 и альвеолярным Рсо 2

Подобно тому, как Рлсо 2 определяется балансом между продукцией СО 2 и аль­веолярной вентиляцией, альвеолярное Р() 2 (Р/\() 2) является функцией скорости по­глощения кислорода через альвеолярно-капиллярную мембрану (гл. 9) и альвеоляр-

Рис. 3-4. Соотношение между аль­веолярной вентиляцией и альвео­лярным Рш,. Альвеолярное Рсо, на­ходится в обратной зависимости от альвеолярной вентиляции. Степень вокдсйс"пжя изменении милу гной вентиляции на альвеолярное Рс:о, :;апмсит от отношения между венти­ляцией мертвого пространства и об­щей вентиляцией. Представлено от­ношение дли человека среднего сло­жения со стабильной нормальной скоростью образования (."О,- (около 200 м ч/мип)

пой вентиляции.

Поскольку парциальные давления азота и водяного пара в альвео­лах постоянны, РА() 2 и РЛС() 2 изменяются реципрокно по отношению друг к другу в зависимости от изменений альвеолярной вентиляции. Рис. 3-5 показывает рост рао, по мере увеличения VA.

Сумма парциальных давлений О 2 , СО 2 , N: > и водяного пара в альвеолах равна барометрическому давлению. Поскольку парциальные давления азота и водяного пара постоянны, парциальное давление О 2 либо СО^ может быть рассчитано, если одно из них известно. Расчет основывается на уравнении альвеолярного газа:

рао? = Рю? - Рдсо 2 (Fio 2 + ---),

где: РЮ 2 - Ро 2 во вдыхаемом газе,

FlO 2 - фракционная концентрация О 2 во вдыхаемом газе,

R - дыхательное газообменное отношение.

R, дыхательное газообменное отношение, выражает скорость выделения СО^ относительно скорости поглощения О 2 (V() 2), т. e. R = Vco 2 / V(> 2 . В устойчивом состоянии организма дыхательное газообменное отношение равно дыхательному ко­эффициенту (RQ), который описывает отношение продукции двуокиси углерода к потреблению кислорода на клеточном уровне. Это отношение зависит от того, что преимущественно используется в организме в качестве источников энергии - угле­воды или жиры. В процессе метаболизма 1 г углеводов выделяется больше СО 2 .

В соответствии с уравнением альвеолярного газа РЛ() 2 может быть рассчи­тано как парциальное давление О 2 во вдыхаемом газе (РЮ 2) минус величина, кото­рая включает РЛСО 2 и фактор, учитывающий изменение общего объема газа, если поглощение кислорода отличается от выделения двуокиси углерода: [ Fl() 2 + (1 -- Fl() 2)/RJ. У здорового взрослого человека со средними размерами тела в состоянии покоя V() 2 составляет около 250 мл/мин; VCO 2 - приблизительно 200 мл/мин. R, таким образом, равно 200/250 или 0.8. Заметим, что величина IFlO, + (1 - FlO 2)/RJ снижается до 1.2, когда FlOz^ 0.21, и до 1.0 при FlOa» 1.0 (если в каждом случае R = 0.8).

Как пример для расчета РЛ() 2 , рассмотрим здорового человека, который дышит комнатным воздухом и у которого РаС() 2 (приблизительно равное РЛС() 2) составля­ет 40 мм рт. ст. Принимаем барометрическое давление равным 760 мм рт. ст. и дав­ление водяного пара - 47 мм рт. ст. (вдыхаемый воздух полностью насыщается во­дой при нормальной температуре тела). Рю 2 рассчитывается как произведение об­щего парциального давления "сухих" газов в альвеолах и фракционной концентра­ции кислорода: т. е. Рю 2 = (760 - 47) х 0.21. Отсюда Рло 2 = [(760 - 47) х 0.21 J -40 = 149-48= 101 мм. рт. ст.

Рис. 3-5. Соотношение между альвеолярной вентиляцией иаль-иеолярным Ро, Альвеолярное 1 } () 2 растет с увеличением альве­олярной вентиляции до достиже­ния плато

text_fields

text_fields

arrow_upward

Воздухопроводящие пути, легочная паренхи­ма, плевра, костно-мышечный каркас грудной клетки и диафрагма составляют единый рабочий орган, посредством которого осущест­вляется вентиляция легких .

Вентиляцией легких называют процесс обновления газового соста­ва альвеолярного воздуха, обеспечивающего поступление в них кис­лорода и выведение избыточного количества углекислого газа .

Ин­тенсивность вентиляции определяется глубиной вдоха и частотой дыхания .
Наиболее информативным показателем вентиляции легких служит минутный объем дыхания , определяемый как произведение дыхательного объема на число дыханий в минуту.
У взрослого муж­чины в спокойном состоянии минутный объем дыхания составляет 6- 10 л/мин,
при работе - от 30 до 100 л/мин.
Частота дыхательных движения в покое 12-16 в 1 мин.
Для оценки потенциальных воз­можностей спортсменов и лиц специальных профессий используют пробу с произвольной максимальной вентиляцией легких, которая у этих людей может достигать 180 л/мин.

Вентиляция разных отделов легких

text_fields

text_fields

arrow_upward

Разные отделы легких человека вентилируются неодинаково, в зависимости от положения тела . При вертикальном положении че­ловека нижние отделы легких вентилируются лучше, чем верхние. Если человек лежит на спине, то разница в вентиляции верхушеч­ных и нижних отделов легких исчезает, однако, при этом задние (дорсальные) их участки начинают вентилироваться лучше, чем пе­редние (вентральные). В положении лежа на боку лучше вентили­руется легкое, находящееся снизу. Неравномерность вентиляции верхних и нижних участков легкого при вертикальном положении человека связана с тем, что транспульмональное давление (разность давления в легких и плевральной полости) как сила, определяющая объем легких и его изменения, у этих участков легкого не одина­ково. Поскольку легкие обладают весом, у их основании транспуль­мональное давление меньше, чем у верхушек. В связи с этим ниж­ние отделы легких в конце спокойного выдоха более сдавлены, однако, при вдохе они расправляются лучше, чем верхушки. Этим объясняется и более интенсивная вентиляция отделов легких, ока­завшихся снизу, если человек лежит на спине или на боку.

Дыхательное мертвое пространство

text_fields

text_fields

arrow_upward

В конце выдоха объем газов в легких равен сумме остаточного объема и резервного объема выдоха, т.е. представляет собой так называемую (ФОЕ). В конце вдоха этот объем увеличивается на величину дыхательного объема, т.е. того объема воздуха, который поступает в легкие во время вдоха и удаляется из них во время выдоха.

Поступающий в легкие во время вдоха воздух заполняет дыха­тельные пути, и часть его достигает альвеол, где смешивается с альвеолярным воздухом. Остальная, обычно меньшая, часть остается в дыхательных путях, в которых обмен газов между содержащимся в них воздухом и кровью не происходит, т.е. в так называемом мертвом пространстве.

Дыхательное мертвое пространство - объем дыхательных путей, в котором не происходят процессы газообмена между воздухом и кровью.
Различают анатомическое и физиологическое (или функци­ональное) мертвое пространство .

Анатомическое дыхательное мер­ твое пространство представляет собой объем воздухоносных путей, начиная от отверстий носа и рта и кончая дыхательными бронхиолами легкого.

Под функциональным (физиологическим) мертвым пространством понимают все те участки дыхательной системы, в которых не происходит газообмена. К функциональному мертвому пространству в отличие от анатомического относятся не только воздухоносные пути, но также альвеолы, которые вентилируются, но не перфузируются кровью. В таких альвеолах газообмен невозможен, хотя их вентиляция и происходит.

У человека среднего возраста объем анатомического мертвого пространства равен 140-150 мл или примерно 1/3 дыхательного объема при спокойном дыхании. В альвеолах к концу спокойного выдоха находится около 2500 мл воздуха (функциональная остаточ­ная емкость), поэтому при каждом спокойном вдохе обновляется лишь 1/7 часть альвеолярного воздуха.

Суть вентиляции легких

text_fields

text_fields

arrow_upward

Таким образом, вентиляция обеспечивает поступление наружного воздуха в легкие и части его в альвеолы и удаление вместо него смеси газов (выдыхаемого воздуха), состоящей из альвеолярного воз­духа и той части наружного воздуха, которая заполняет мертвое пространство в конце вдоха и удаляется первой в начале выдоха. Поскольку альвеолярный воздух содержит меньше кислорода и боль­ше углекислого газа, чем наружный, суть вентиляции легких сво­дится к доставке в альвеолы кислорода (возмещающего убыль кис­лорода, переходящего из альвеол в кровь легочных капилляров) и удалению из них углекислого газа (поступающего в альвеолы из крови легочных капилляров). Между уровнем тканевого метаболизма (скорость потребления тканями кислорода и образования в них уг­лекислоты) и вентиляцией легких существует зависимость, близкая к прямой пропорциональности. Соответствие легочной и, главное, альвеолярной вентиляции уровню метаболизма обеспечивается сис­темой регуляции внешнего дыхания и проявляется в виде увеличе­ния минутного объема дыхания (как за счет увеличения дыхатель­ного объема, так и частоты дыхания) при увеличении скорости потребления кислорода и образования углекислоты в тканях.

Вентиляция легких происходит , благодаря активному физиологи­ческому процессу (дыхательным движениям), который обуславливает механическое перемещение воздушных масс по трахеобронхиальным путям объемными потоками. В отличие от конвективного переме­щения газов из окружающей среды в бронхиальное пространство дальнейший транспорт газов (переход кислорода из бронхиол в альвеолы и, соответственно, углекислого газа из альвеол в бронхио­лы) осуществляется, главным образом, путем диффузии.

Поэтому различают понятие «легочная вентиляция» и «альвеолярная вентиляция».

Альвеолярная вентиляция

text_fields

text_fields

arrow_upward

Альвеолярную вентиляцию не удается объяснить только за счет создаваемых активным вдохом конвективных потоков воздуха в лег­ких. Суммарный объем трахеи и первых 16 генераций бронхов и бронхиол составляет 175 мл, последующих трех (17-19) генераций бронхиол - еще 200 мл. Если все это пространство, в котором почти отсутствует газообмен, «промывалось» бы конвективными по­токами наружного воздуха, то дыхательное мертвое пространство должно было бы составлять почти 400 мл. Если вдыхаемый воздух поступает в альвеолы через альвеолярные ходы и мешочки (объем которых равен 1300 мл) также путем конвективных потоков, то кислород атмосферного воздуха может достигнуть альвеол лишь при объеме вдоха не менее 1500 мл, тогда как обычный дыхательный объем составляет у человека 400- 500 мл.

В условиях спокойного дыхания (частота дыхания 15 а мин, продолжительность вдоха 2 с, средняя объемная скорость вдоха 250 мл/с), во время вдоха (дыхательный объем 500 мл) наружный воздух заполняет всю проводящую (объем 175 мл) и переходную (объем 200 мл) зоны бронхиального дерева. Лишь небольшая его часть (менее 1/3) поступает в альвеолярные ходы, объем которых в несколько раз превышает эту часть дыхательного объема. При таком вдохе линей­ная скорость потока вдыхаемого воздуха в трахее и главных бронхах равна примерно 100 см/с. В связи с последовательным делением бронхов на все более меньшие по диаметру, при одновременном увеличении их числа и суммарного просвета каждой последующей генерации, движение по ним вдыхаемого воздуха замедляется. На границе проводящей и переходной зон трахеобронхиального пути линейная скорость потока составляет всего около 1 см/с, в дыха­тельных бронхиолах она снижается до 0.2 см/с, а в альвеолярных ходах и мешочках - до 0.02 см/с.

Таким образом, скорость конвективных потоков воздуха, возника­ющих во время активного вдоха и обусловленных разностью между давлением воздуха в окружающей среде и давлением в альвеолах, в дистальных отделах трахеобронхиального дерева весьма мала, а в альвеолы из альвеолярных ходов и альвеолярных мешочков воздух поступает путем конвекции с небольшой линейной скоростью. Од­нако, суммарная площадь поперечного сечения не только альве­олярных ходов (тысячи см 2), но и дыхательных бронхиол, образу­ющих переходную зону (сотни см 2), достаточно велика для того, чтобы обеспечить диффузионный перенос кислорода из дистальных отделов бронхиального дерева в альвеолы, а углекислого газа - в обратном направлении.

Благодаря диффузии, состав воздуха в воз­духоносных путях респираторной и переходной зоны приближается по составу к альвеолярному. Следовательно , диффузионное переме­щение газов увеличивает объем альвеолярного и уменьшает объем мертвого пространства. Кроме большой площади диффузии, этот процесс обеспечивается также значительным градиентом парциаль­ных давлений: во вдыхаемом воздухе парциальное давление кисло­рода на 6.7 кПа (50 мм рт.ст.) больше, чем в альвеолах, а парци­альное давление углекислого газа в альвеолах на 5.3 кПа (40 мм рт.ст.) больше, чем во вдыхаемом воздухе. В течение одной секунды за счет диффузии концентрация кислорода и углекислоты в альве­олах и ближайших структурах (альвеолярные мешочки и альвеоляр­ные ходы) практически выравниваются.

Следовательно , начиная с 20-й генерации, альвеолярная вентиля­ция обеспечивается исключительно за счет диффузии. Благодаря диффузионному механизму перемещения кислорода и углекислого газа, в легких отсутствует постоянная граница между мертвым пространством и альвеолярным пространством. В воздухоносных путях есть зона, в пределах которой происходит процесс диффузии, где парциальное давление кислорода и углекислого газа изменяется, со­ответственно, от 20 кПа (150 мм рт.ст.) и 0 кПа в проксимальной части бронхиального дерева до 13.3 кПа (100 мм рт.ст.) и 5.3 кПа (40 мм рт.ст.) в дистальной его части. Таким образом, по ходу бронхиальных путей существует послойная неравномерность состава воздуха от атмосферного до альвеолярного (рис.8.4).

Рис.8.4. Схема альвеолярной вентиляции.
«а» - по устаревшим и
«б» - по современным представлениям.МП - мертвое пространство;
АП - альвеолярное пространство;
Т - трахея;
Б - бронхи;
ДБ - дыхательные бронхиолы;
АХ - альвеолярные ходы;
AM - альвеолярные мешочки;
А - альвеолы.
Стрелками обозначены конвективные потоки воздуха, точками - область диффузионного обмена газов.

Эта зона сме­щается в зависимости от режима дыхания и, в первую очередь, от скорости вдоха; чем больше скорость вдоха (т.е. в итоге, чем боль­ше минутный объем дыхания), тем дистальнее по ходу бронхиаль­ного дерева выражены конвективные потоки со скоростью, прева­лирующей над скоростью диффузии. В результате с увеличением минутного объема дыхания увеличивается мертвое пространство, а граница между мертвым пространством и альвеолярным простран­ством сдвигается в дистальном направлении.

Следовательно , анато­мическое мертвое пространство (если его определять числом гене­раций бронхиального дерева, в которых диффузия еще не имеет значения) изменяется так же, как и функциональное мертвое про­странство - в зависимости от объема дыхания.

Проводящие пути

Нос - первые изменения поступающего воздуха происходят в носу, где он очищается, согревается и увлажняется. Этому способствует волосяной фильтр, преддверие и раковины носа. Интенсивное кровоснабжение слизистой оболочки и пещеристых сплетений раковин обеспечивает быстрое согревание или охлаждение воздуха до температуры тела. Испаряющаяся со слизистой оболочки вода увлажняет воздух на 75-80%. Длительное вдыхание воздуха пониженной влажности приводит к высыханию слизистой оболочки, попаданию сухого воздуха в легкие, развитию ателектазов, пневмонии и повышению сопротивления в воздухоносных путях.


Глотка отделяет пищу от воздуха, регулирует давление в области среднего уха.


Гортань обеспечивает голосовую функцию, с помощью надгортанника предотвращая аспирацию, а смыкание голосовых связок является одним из основных компонентов кашля.

Трахея — основной воздуховод, в ней согревается и увлажняется воздух. Клетки слизистой оболочки захватывают инородные вещества, а реснички продвигают слизь вверх по трахее.

Бронхи (долевые и сегментарные) заканчиваются концевыми бронхиолами.


Гортань, трахея и бронхи также участвуют в очищении, согревании и увлажнении воздуха.


Строение стенки проводящих воздухоносных путей (ВП) отличается от структуры дыхательных путей газообменной зоны. Стенка проводящих воздухоносных путей состоит из слизистой оболочки, слоя гладких мышц, подслизистой соединительной и хрящевой оболочек. Эпителиальные клетки воздухоносных путей снабжены ресничками, которые, ритмично колеблясь, продвигают защитный слой слизи в направлении носоглотки. Слизистая оболочка ВП и легочная ткань содержат макрофаги, фагоцитирующие и переваривающие минеральные и бактериальные частицы. В норме слизь из дыхательных путей и альвеол постоянно удаляется. Слизистая оболочка ВП представлена реснитчатым псевдомногослойным эпителием, а также секреторными клетками, выделяющими слизь, иммуноглобулины, комплемент, лизоцим, ингибиторы, интерферон и другие вещества. В ресничках содержится много митохондрий, обеспечивающих энергией их высокую двигательную активность (около 1000 движений в 1 мин.), что позволяет транспортировать мокроту со скоростью до 1 см/мин в бронхах и до 3 см/мин в трахее. За сутки из трахеи и бронхов в норме эвакуируется около 100 мл мокроты, а при патологических состояниях до 100 мл/час.


Реснички функционируют в двойном слое слизи. В нижнем находятся биологически активные вещества, ферменты, иммуноглобулины, концентрация которых в 10 раз больше, чем в крови. Это обуславливает биологическую защитную функцию слизи. Верхний слой ее механически защищает реснички от повреждений. Утолщение или уменьшение верхнего слоя слизи при воспалении или токсическом воздействии неизбежно нарушает дренажную функцию реснитчатого эпителия, раздражает дыхательные пути и рефлекторно вызывает кашель. Чихание и кашель защищают легкие от проникновения минеральных и бактериальных частиц.


Альвеолы


В альвеолах происходит газообмен между кровью легочных капилляров и воздухом. Общее число альвеол равно примерно 300 млн., а суммарная площадь их поверхности - примерно 80 м 2 . Диаметр альвеол составляет 0,2-0,3 мм. Газообмен между альвеолярным воздухом и кровью осуществляется путем диффузии. Кровь легочных капилляров отделена от альвеолярного пространства лишь тонким слоем ткани - так называемой альвеолярно-капиллярной мембраной, образованной альвеолярным эпителием, узким интерстициальным пространством и эндотелием капилляра. Общая толщина этой мембраны не превышает 1 мкм. Вся альвеолярная поверхность легких покрыта тонкой пленкой, называемой сурфактантом.

Сурфактант уменьшает поверхностное натяжение на границе между жидкостью и воздухом в конце выдоха, когда объем легкого минимален, увеличивает эластичность легких и играет роль противоотечного фактора (не пропускает пары воды из альвеолярного воздуха), в результате чего альвеолы остаются сухими. Он снижает поверхностное натяжение при уменьшении объема альвеолы во время выдоха и предупреждает её спадение; уменьшает шунтирование, что улучшает оксигенацию артериальной крови при более низком давлении и минимальном содержании О 2 во вдыхаемой смеси.


Сурфактантный слой состоит из:

1) собственно сурфактанта (микропленки из фосфолипидных или полипротеидных молекулярных комплексов на границе с воздушной средой);

2) гипофазы (глубжележащего гидрофильного слоя из белков, электролитов, связанной воды, фосфолипидов и полисахаридов);

3) клеточного компонента, представленного альвеолоцитами и альвеолярными макрофагами.


Основными химическими составляющими сурфактанта является липиды, белки и углеводы. Фосфолипиды (лецитин, пальмитиновая кислота, гепарин) составляют 80-90% его массы. Сурфактант покрывает непрерывным слоем и бронхиолы, понижает сопротивление при дыхании, поддерживает наполнение

При низком давлении растяжения, уменьшает действие сил, вызывающих накопление жидкости в тканях. Кроме того, сурфактант очищает вдыхаемые газы, отфильтровывает и улавливает вдыхаемые частицы, регулирует обмен воды между кровью и воздушной средой альвеолы, ускоряет диффузию СО 2 , обладает выраженным антиокислительным действием. Сурфактант очень чувствителен к различным эндо- и экзогенным факторам: нарушениям кровообращения, вентиляции и метаболизма, изменению РО 2 во вдыхаемом воздухе, загрязнению его. При дефиците сурфактанта возникают ателектазы и РДС новорожденных. Примерно 90-95% альвеолярного сурфактанта повторно перерабатывается, очищается, накапливается и ресекретируется. Период полувыведения компонентов сурфактанта из просвета альвеол здоровых легких составляет около 20 ч.

Легочные объёмы

Вентиляция легких зависит от глубины дыхания и частоты дыхательных движений. Оба этих параметра могут варьировать в зависимости от потребностей организма. Есть ряд объемных показателей, характеризующих состояние легких. Нормальные средние значения для взрослого человека следующие:


1. Дыхательный объем (ДО- VT - Tidal Volume) - объем вдыхаемого и выдыхаемого воздуха при спокойном дыхании. Нормальные значения - 7-9мл/кг.


2. Резервный объем вдоха (РОвд - IRV - Inspiratory Reserve Volume) - объем, который может дополнительно поступить после спокойного вдоха, т.е. разница между нормальной и максимальной вентиляцией. Нормальное значение: 2-2,5 л (около 2/3 ЖЕЛ).

3. Резервный объем выдоха (РОвыд - ERV - Expiratory Reserve Volume) - объем, который можно дополнительно выдохнуть после спокойного выдоха, т.е. разница между нормальным и максимальным выдохом. Нормальное значение: 1,0-1,5 л (около 1/3 ЖЕЛ).


4.Остаточный объем (ОО - RV - Residal Volume) - объем, остающийся в легких после максимального выдоха. Около 1,5-2,0 л.


5. Жизненная емкость легких (ЖЕЛ - VT - Vital Capacity) — количество воздуха, которое может быть максимально выдохнуто после максимального вдоха. ЖЕЛ является показателем подвижности легких и грудной клетки. ЖЕЛ зависит от возраста, пола, размеров и положения тела, степени тренированности. Нормальные значения ЖЕЛ - 60-70 мл/кг - 3,5-5,5 л.


6. Резерв вдоха (РВ) -Ёмкость вдоха (Евд - IC - Inspiritory Capacity) - максимальное количество воздуха, которое может поступить в легкие после спокойного выдоха. Равен сумме ДО и РОвд.

7. Общая емкость легких (ОЕЛ - TLC - Total lung capacity) или максимальная емкость легких - количество воздуха, содержащееся в легких на высоте максимального вдоха. Состоит из ЖЕЛ и ОО и рассчитывается как сумма ЖЕЛ и ОО. Нормальное значение около 6,0 л.
Исследование структуры ОЕЛ является решающим в выяснении путей увеличения или снижения ЖЕЛ, что может иметь существенное практическое значение. Увеличение ЖЕЛ может быть расценено положительно только в том случаи, если ОЕЛ не меняется или увеличивается, но меньше, чем ЖЕЛ, что происходит при увеличении ЖЕЛ за счет уменьшения ОО. Если одновременно с увеличением ЖЕЛ происходит еще большее увеличение ОЕЛ, то это нельзя считать положительным фактором. При ЖЕЛ ниже 70% ОЕЛ функция внешнего дыхания глубоко нарушена. Обычно при патологических состояниях ОЕЛ и ЖЕЛ изменяются одинаково, за исключением обструктивной эмфиземы легких, когда ЖЕЛ, как правило, уменьшается, ОО увеличивается, а ОЕЛ может оставаться нормальной или быть выше нормы.


8. Функциональная остаточная емкость (ФОЕ - FRC - Functional residual volume) - количество воздуха, которое остается в легких после спокойного выдоха. Нормальные значения у взрослых - от 3 до 3,5 л. ФОЕ = ОО + РОвыд. По определению ФОЕ - объем газа, который остается в легких при спокойном выдохе и может быть мерой области газообмена. Она образуется в результате баланса между противоположно направленными эластическими силами легких и грудной клетки. Физиологическое значение ФОЕ состоит в частичном обновлении альвеолярного объема воздуха во время вдоха (вентилируемый объем) и указывает на объем альвеолярного воздуха, постоянно находящегося в легких. Со снижением ФОЕ связаны развитие ателектазов, закрытие мелких дыхательных путей, уменьшение податливости легких, увеличение альвеолярно-артериального различия по О 2 в результате перфузии в ателектазированных участках легких, снижение вентиляционно-перфузионного соотношения. Обструктивные вентиляционные нарушения ведут к повышению ФОЕ, рестриктивные нарушения - к снижению ФОЕ.


Анатомическое и функциональное мертвое пространство


Анатомическим мертвым пространством называют объем воздухоносных путей, в котором не происходит газообмен. Это пространство включает носовую и ротовую полости, глотку, гортань, трахею, бронхи и бронхиолы. Объем мертвого пространства зависит от роста и положения тела. Приближенно можно считать, что у сидящего человека объем мертвого пространства (в миллилитрах) равен удвоенной массе тела (в килограммах). Таким образом, у взрослых он равен около 150-200 мл (2 мл/кг массы тела).


Под функциональным (физиологическим) мертвым пространством понимают все те участки дыхательной системы, в которых не происходит газообмена по причине сниженного или отсутствующего кровотока. К функциональному мертвому пространству в отличие от анатомического относятся не только воздухоносные пути, но также и те альвеолы, которые вентилируются, но не перфузируются кровью.


Альвеолярная вентиляция и вентиляция мертвого пространства

Часть минутного объема дыхания, достигающая альвеол, называется альвеолярной вентиляцией, остальная его часть составляет вентиляцию мертвого пространства. Альвеолярная вентиляция служит показателем эффективности дыхания в целом. Именно от этой величины зависит газовый состав, поддерживаемый в альвеолярном пространстве. Что касается минутного объема, то он лишь в незначительной степени отражает эффективность вентиляции легких. Так, если минутный объем дыхания нормальный (7л/мин), но дыхание частое и поверхностное (ДО-0,2 л, ЧД-35/мин), то вентилироваться

Будет главным образом мертвое пространство, в которое воздух поступает раньше, чем в альвеолярное; в этом случае вдыхаемый воздух почти не будет достигать альвеол. Поскольку объем мертвого пространства постоянен, альвеолярная вентиляция тем больше, чем глубже дыхание и меньше частота.


Растяжимость (податливость) легочной ткани
Растяжимость легких является мерой эластической тяги, а также эластического сопротивления легочной ткани, которое преодолевается в процессе вдоха. Иначе говоря, растяжимость — это мера упругости легочной ткани, т. е. её податливость. Математически растяжимость выражается в виде частного от изменения объема легких и соответствующего изменения внутрилегочного давления.

Растяжимость может быть измерена отдельно для легких и для грудной клетки. С клинической точки зрения (особенно во время ИВЛ) наибольший интерес представляет именно податливость самой легочной ткани, отражающая степень рестриктивной легочной патологии. В современной литературе растяжимость легких принято обозначать термином «комплайнс» (от английского слова «compliance», сокращенно — С).


Податливость легких снижается:

С возрастом (у пациентов старше 50 лет);

В положении лежа (из-за давления органов брюшной полости на диафрагму);

Во время лапароскопических хирургических вмешательств в связи с карбоксиперитонеумом;

При острой рестриктивной патологии (острые полисегментарные пневмонии, РДС, отёк легких, ателектазирование, аспирация и т. д.);

При хронической рестриктивной патологии (хроническая пневмония, фиброз легких, коллагенозы, силикозы и т. д.);

При патологии органов, которые окружают легкие (пневмо- или гидроторакс, высокое стояние купола диафрагмы при парезе кишечника и т.д.).


Чем хуже податливость лёгких, тем большее эластическое сопротивление легочной ткани надо преодолеть, чтобы достигнуть того дыхательного объема, что и при нормальной податливости. Следовательно, в случае ухудшающейся растяжимости лёгких при достижении того же дыхательного объема давление в дыхательных путях существенно возрастает.

Данное положение очень важно для понимания: при объемной ИВЛ, когда принудительный дыхательный объём подается больному с плохой податливостью легких (без высокого сопротивления дыхательных путей), существенный рост пикового давления в дыхательных путях и внутрилегочного давления значительно увеличивает риск баротравмы.


Сопротивление дыхательных путей


Поток дыхательной смеси в легких должен преодолеть не только эластическое сопротивление самой ткани, но и резистивное сопротивление дыхательных путей Raw (аббревиатура от английского слова «resistance»). Поскольку трахеобронхиальное дерево представляет собой систему трубок различной длины и ширины, то сопротивление газотоку в легких можно определить по известным физическим законам. В целом, сопротивление потоку зависит от градиента давлений в начале и в конце трубки, а также от величины самого потока.


Поток газа в легких может быть ламинарным, турбулентным и переходным. Для ламинарного потока характерно послойное поступательное движение газа с

Различной скоростью: скорость потока наиболее высока в центре и постепенно снижается к стенкам. Ламинарный поток газа преобладает при относительно низких скоростях и описывается законом Пуазейля, в соответствии с которым сопротивление газотоку в наибольшей степени зависит от радиуса трубки (бронхов). Уменьшение радиуса в 2 раза приводит к возрастанию сопротивления в 16 раз. В связи с этим понятна важность выбора по возможности наиболее широкой эндотрахеальной (трахеостомической) трубки и поддержания проходимости трахеобронхиального дерева во время ИВЛ.
Сопротивление дыхательных путей газотоку значительно увеличивается при бронхиолоспазме, отеке слизистой оболочки бронхов, скоплении слизи и воспалительного секрета по причине сужения просвета бронхиального дерева. На сопротивление влияют также скорость потока и длина трубки (бронхов). С

Увеличением скорости потока (форсирование вдоха или выдоха) сопротивление дыхательных путей увеличивается.

Основные причины увеличения сопротивления дыхательных путей:

Бронхиолоспазм;

Отек слизистой оболочки бронхов, (обострение бронхиальной астмы, бронхит, подсвязочный ларингит);

Инородное тело, аспирация, новообразования;

Скопление мокроты и воспалительного секрета;

Эмфизема (динамическая компрессия воздухоносных путей).


Турбулентный поток характеризуется хаотичным движением молекул газа вдоль трубки (бронхов). Он преобладает при высоких объемных скоростях потока. В случае турбулентного потока сопротивление дыхательных путей возрастает, так как при этом оно в еще большей степени зависит от скорости потока и радиуса бронхов. Турбулентное движение возникает при высоких потоках, резких изменениях скорости потока, в местах изгибов и разветвлений бронхов, при резком изменении диаметра бронхов. Вот почему турбулентный поток характерен для больных ХОЗЛ, когда даже в стадии ремиссии имеет место повышенное сопротивление дыхательных путей. Это же касается больных бронхиальной астмой.


Сопротивление воздухоносных путей распределено в легких неравномерно. Наибольшее сопротивление создают бронхи среднего калибра (до 5-7-й генерации), так как сопротивление крупных бронхов невелико из-за их большого диаметра, а мелких бронхов — вследствие значительной суммарной площади поперечного сечения.


Сопротивление дыхательных путей зависит также от объема легких. При большом объёме паренхима оказывает большее «растягивающее» действие на дыхательные пути, и их сопротивление уменьшается. Применение ПДКВ (PEEP) способствует увеличению объема легких и, следовательно, снижению сопротивления дыхательных путей.

Сопротивление дыхательных путей в норме составляет:

У взрослых — 3-10 мм вод.ст./л/с;

У детей — 15-20 мм вод.ст./л/с;

У младенцев до 1 года — 20-30 мм вод.ст./л/с;

У новорожденных — 30-50 мм вод.ст./л/с.


На выдохе сопротивление дыхательных путей на 2-4 мм вод.ст./л/с больше, чем на вдохе. Это связано с пассивным характером выдоха, когда состояние стенки воздухоносных путей в большей мере влияет на газоток, чем при активном вдохе. Поэтому для полноценного выдоха требуется в 2-3 раза больше времени, чем для вдоха. В норме соотношение времени вдох/выдох (I:E) составляет для взрослых около 1: 1,5-2. Полноценность выдоха у больного во время ИВЛ можно оценить при помощи мониторинга экспираторной временной константы.


Работа дыхания


Работа дыхания совершается преимущественно инспираторными мышцами во время вдоха; выдох почти всегда пассивен. В то же время в случае, например, острого бронхоспазма или отека слизистой оболочки дыхательных путей выдох также становится активным, что значительно увеличивает общую работу внешней вентиляции.


Во время вдоха работа дыхания, в основном, тратится на преодоление эластического сопротивления легочной ткани и резистивного сопротивления дыхательных путей, при этом около 50 % затраченной энергии накапливается в упругих структурах легких. Во время выдоха эта накопленная потенциальная энергия высвобождается, что позволяет преодолевать экспираторное сопротивление дыхательных путей.

Увеличение сопротивления вдоху или выдоху компенсируется дополнительной работой дыхательных мышц. Работа дыхания возрастает при снижении растяжимости легких (рестриктивная патология), росте сопротивления дыхательных путей (обструктивная патология), тахипноэ (за счет вентиляции мертвого пространства).


На работу дыхательной мускулатуры в норме тратится только 2-3% от всего потребляемого организмом кислорода. Это, так называемая, «стоимость дыхания». При физической работе стоимость дыхания может достигать 10-15%. А при патологии (особенно рестриктивной) на работу дыхательных мышц может расходоваться более 30-40% от всего поглощаемого организмом кислорода. При тяжёлой диффузионной дыхательной недостаточности стоимость дыхания возрастает до 90%. С какого-то момента весь дополнительный кислород, получаемый за счет увеличения вентиляции, идет на покрытие соответствующего прироста работы дыхательных мышц. Вот почему на определенном этапе существенное увеличение работы дыхания является прямым показанием к началу ИВЛ, при которой стоимость дыхания уменьшается практически до 0.


Работа дыхания, которая требуется для преодоления эластического сопротивления (податливости легких), возрастает по мере увеличения дыхательного объема. Работа, необходимая для преодоления резистивного сопротивления дыхательных путей, возрастает при увеличении частоты дыхания. Пациент стремится уменьшить работу дыхания, меняя частоту дыхания и дыхательный объем в зависимости от преобладающей патологии. Для каждой ситуации существуют оптимальные частота дыхания и дыхательный объем, при которых работа дыхания минимальна. Так, для больных со сниженной растяжимостью, с точки зрения минимизации работы дыхания, подходит более частое и поверхностное дыхание (малоподатливые легкие трудно поддаются расправлению). С другой стороны, при увеличенном сопротивлении дыхательных путей оптимально глубокое и медленное дыхание. Это понятно: увеличение дыхательного объема позволяет «растянуть», расширить бронхи, уменьшить их сопротивление газотоку; с этой же целью больные с обструктивной патологией во время выдоха сжимают губы, создавая собственное «ПДКВ» (PEEP). Медленное и редкое дыхание способствует удлинению выдоха, что важно для более полного удаления выдыхаемой газовой смеси в условиях повышенного экспираторного сопротивления дыхательных путей.


Регуляция дыхания

Процесс дыхания регулируется центральной и периферической нервной системой. В ретикулярной формации головного мозга находится дыхательный центр, состоящий из центров вдоха, выдоха и пневмотаксиса.


Центральные хеморецепторы расположены в продолговатом мозге и возбуждаются при повышении концентрации Н+ и РСО 2 в спинномозговой жидкости. В норме рН последней составляет 7,32, РСО 2 - 50 мм.рт.ст., а содержание НСО 3 - 24,5 ммоль/л. Даже небольшое снижение рН и рост РСО 2 увеличивают вентиляцию легких. Эти рецепторы реагируют на гиперкапнию и ацидоз медленнее, чем периферические, так как требуется дополнительное время на измерение величины СО 2 , Н + и НСО 3 из-за преодоления гематоэнцефалического барьера. Сокращения дыхательных мышц контролирует центральный дыхательный механизм, состоящий из группы клеток продолговатого мозга, моста, а также пневмотаксических центров. Они тонизируют дыхательный центр и по импульсации из механорецепторов определяют порог возбуждения, при котором прекращается вдох. Пневмотаксические клетки также переключают вдох на выдох.


Периферические хеморецепторы, расположенные на внутренних оболочках сонного синуса, дуги аорты, левого предсердия, контролируют гуморальные параметры (РО 2 , РСО 2 в артериальной крови и спинномозговой жидкости) и немедленно реагируют на изменения внутренней среды организма, меняя режим самостоятельного дыхания и, таким образом, корригируя рН, РО 2 и РСО 2 в артериальной крови и спинномозговой жидкости. Импульсы из хеморецепторов регулируют объем вентиляции, необходимый для поддержания определенного уровня метаболизма. В оптимизации режима вентиляции, т.е. установлении частоты и глубины дыхания, длительности вдоха и выдоха, силы сокращения дыхательных мышц при данном уровне вентиляции, участвуют и механорецепторы. Вентиляция легких определяется уровнем метаболизма, воздействием продуктов обмена веществ и О2 на хеморецепторы, которые трансформируют их в афферентную импульсацию нервных структур центрального дыхательного механизма. Основная функция артериальных хеморецепторов - немедленная коррекция дыхания в ответ на изменения газового состава крови.


Периферические механорецепторы, локализующиеся в стенках альвеол, межреберных мышцах и диафрагме, реагируют на растяжение структур, в которых они находятся, на информацию о механических явлениях. Главную роль играют механорецепторы легких. Вдыхаемый воздух поступает по ВП к альвеолам и участвует в газообмене на уровне альвеолярно-капиллярной мембраны. По мере растяжения стенок альвеол во время вдоха механорецепторы возбуждаются и посылают афферентный сигнал в дыхательный центр, который тормозит вдох (рефлекс Геринга-Брейера).


При обычном дыхании межреберно-диафрагмальные механорецепторы не возбуждаются и имеют вспомогательное значение.

Система регуляции завершается нейронами, интегрирующими импульсы, которые поступают к ним от хеморецепторов, и посылающими импульсы возбуждения к дыхательным мотонейронам. Клетки бульбарного дыхательного центра посылают как возбуждающие, так и тормозящие импульсы к дыхательным мышцам. Координированное возбуждение респираторных мотонейронов приводит к синхронному сокращению дыхательных мышц.

Дыхательные движения, создающие воздушный поток, происходят благодаря согласованной работе всех дыхательных мышц. Нервные клетки двигательных

Нейронов дыхательных мышц расположены в передних рогах серого вещества спинного мозга (шейные и грудные сегменты).


У человека в регуляции дыхания принимает участие и кора большого мозга в пределах, допускаемых хеморецепторной регуляцией дыхания. Так, например, волевая задержка дыхания ограничена временем, в течение которого РаО 2 в спинномозговой жидкости повышается до уровней, возбуждающих артериальные и медуллярные рецепторы.


Биомеханика дыхания


Вентиляция легких происходит за счет периодических изменений работыдыхательных мышц, объема грудной полости и легких. Основными мышцами вдоха являются диафрагма и наружные межреберные мышцы. Во время их сокращения происходят уплощение купола диафрагмы и приподнятие ребер кверху, в результате объем грудной клетки увеличивается, растет отрицательное внутриплевральное давление (Ppl). Перед началом вдоха (в конце выдоха) Ppl приблизительно составляет минус 3-5 см вод.ст. Альвеолярное давление (Palv) принимается за 0 (т. е. равно атмосферному), оно же отражает давление в дыхательных путях и коррелирует с внутригрудным давлением.


Градиент между альвеолярным и внутриплевральным давлением называется транспульмонарным давлением (Ptp). В конце выдоха оно составляет 3-5 см вод.ст. Во время спонтанного вдоха рост отрицательного Ppl (до минус 6-10 см вод.ст.) вызывает снижение давления в альвеолах и дыхательных путях ниже атмосферного. В альвеолах давление снижается до минус 3-5 см вод.ст. За счёт разницы давлений воздух поступает (засасывается) из внешней среды в легкие. Грудная клетка и диафрагма действуют как поршневой насос, втягивающий воздух в легкие. Такое «присасывающее» действие грудной клетки важно не только для вентиляции, но и для кровообращения. Во время спонтанного вдоха происходят дополнительное «присасывание» крови к сердцу (поддержание преднагрузки) и активизация легочного кровотока из правого желудочка по системе легочной артерии. В конце вдоха, когда движение газа прекращается, альвеолярное давление возвращается к нулю, но внутриплевральное давление остается сниженным до минус 6-10 см вод.ст.

Выдох в норме является процессом пассивным. После расслабления дыхательных мышц силы эластической тяги грудной клетки и легких вызывают удаление (выдавливание) газа из легких и восстановление первоначального объема легких. В случае нарушения проходимости трахеобронхиального дерева (воспалительный секрет, отек слизистой оболочки, бронхоспазм) процесс выдоха затруднен, и в акте дыхания начинают принимать участие также мышцы выдоха (внутренние межреберные мышцы, грудные мышцы, мышцы брюшного пресса и т. д.). При истощении экспираторных мышц процесс выдоха еще более затрудняется, происходит задержка выдыхаемой смеси и динамическое перераздувание легких.


Недыхательные функции легких

Функции легких не ограничиваются диффузией газов. В них содержится 50% всех эндотелиальных клеток организма, которые выстилают капиллярную поверхность мембраны и участвуют в метаболизме и инактивации биологически активных веществ, проходящих через легкие.


1. Легкие контролируют общую гемодинамику путем различного заполнения собственного сосудистого русла и влияния на биологически активные вещества, регулирующие сосудистый тонус (серотонин, гистамин, брадикинин, катехоламины), превращением ангиотензина I в ангиотензин II, участием в метаболизме простагландинов.


2. Легкие регулируют свертывание крови, секретируя простациклин - ингибитор агрегации тромбоцитов, и удаляя из кровотока тромбопластин, фибрин и продукты его деградации. В результате этого оттекающая от легких кровь имеет более высокую фибринолитическую активность.


3. Легкие участвуют в белковом, углеводном и жировом обмене, синтезируя фосфолипиды (фосфатидилхолин и фосфатидилглицерол - основные компоненты сурфактанта).

4. Легкие продуцируют и элиминируют тепло, поддерживая энергетический баланс организма.


5. Легкие очищают кровь от механических примесей. Агрегаты клеток, микротромбы, бактерии, пузырьки воздуха, капли жира задерживаются легкими и подвергаются деструкции и метаболизму.


Типы вентиляции и виды нарушений вентиляции


Разработана физиологически четкая классификация типов вентиляции, в основу которой положены парциальные давления газов в альвеолах. В соответствии с этой классификацией выделяются следующие типы вентиляции:


1.Нормовентиляция - нормальная вентиляция, при которой парциальное давление СО2 в альвеолах поддерживается на уровне около 40 мм.рт.ст.


2.Гипервентиляция - усиленная вентиляция, превышающаяметаболические потребности организма (РаСО2<40 мм.рт.ст.).


3.Гиповентиляция - сниженная вентиляция по сравнению с метаболическими потребностями организма (РаСО2>40 мм.рт.ст.).


4. Повышенная вентиляция - любое увеличение альвеолярной вентиляции по сравнению с уровнем покоя, независимо от парциального давления газов в альвеолах (например, при мышечной работе).

5.Эупноэ - нормальная вентиляция в покое, сопровождающаяся субъективным чувством комфорта.


6.Гиперпноэ - увеличение глубины дыхания независимо от того, повышена ли при этом частота дыхательных движений или нет.


7.Тахипноэ - увеличение частоты дыхания.


8.Брадипноэ - снижение частоты дыхания.


9.Апноэ - остановка дыхания, обусловленная, главным образом, отсутствием физиологической стимуляции дыхательного центра (уменьшение напряжения СО2, в артериальной крови).


10.Диспноэ (одышка) - неприятное субъективное ощущение недостаточности дыхания или затрудненного дыхания.


11.Ортопноэ - выраженная одышка, связанная с застоем крови в легочных капиллярах в результате недостаточности левого сердца. В горизонтальном положении это состояние усугубляется, и поэтому лежать таким больным тяжело.


12.Асфиксия - остановка или угнетение дыхания, связанные, главным образом, с параличом дыхательных центров или закрытием дыхательных путей. Газообмен при этом резко нарушен (наблюдается гипоксия и гиперкапния).

В целях диагностики целесообразно различать два типа нарушений вентиляции - рестриктивный и обструктивный.


К рестриктивному типу нарушений вентиляции относятся все патологические состояния, при которых снижаются дыхательная экскурсия и способность легких расправляться, т.е. уменьшается их растяжимость. Такие нарушения наблюдаются, например, при поражениях легочной паренхимы (пневмонии, отёк лёгких, фиброз лёгких) или при плевральных спайках.


Обструктивный тип нарушений вентиляции обусловлен сужением воздухоносных путей, т.е. повышением их аэродинамического сопротивления. Подобные состояния встречаются, например, при накоплении в дыхательных путях слизи, набухании их слизистой оболочки или спазме бронхиальных мышц (аллергический бронхиолоспазм, бронхиальная астма, астмоидный бронхит и т.д.). У таких больных сопротивление вдоху и выдоху повышено, и поэтому со временем воздушность легких и ФОЕ у них увеличиваются. Патологическое состояние, характеризующееся чрезмерным уменьшением числа эластических волокон(исчезновением альвеолярных перегородок, объединением капиллярной сети), называется эмфиземой легких.

Понравилась статья? Поделитесь ей