Контакты

Простейшие задачи с прямой на плоскости. Взаимное расположение прямых

Для того, чтобы решить геометрическую задачу методом координат, необходима точка пересечения, координаты которой используются при решении. Возникает ситуация, когда требуется искать координаты пересечения двух прямых на плоскости или определить координаты тех же прямых в пространстве. Данная статья рассматривает случаи нахождения координат точек, где пересекаются заданные прямые.

Yandex.RTB R-A-339285-1

Необходимо дать определение точкам пересечения двух прямых.

Раздел взаимного расположения прямых на плоскости показывает, что они могут совпадать, быть параллельными, пересекаться в одной общей точке или скрещивающимися. Две прямые, находящиеся в пространстве, называют пересекающимися, если они имеют одну общую точку.

Определение точки пересечения прямых звучит так:

Определение 1

Точка, в которой пересекаются две прямые, называют их точкой пересечения. Иначе говоря, что точка пересекающихся прямых и есть точка пересечения.

Рассмотрим на рисунке, приведенном ниже.

Перед нахождением координат точки пересечения двух прямых, необходимо рассмотреть предлагаемый ниже пример.

Если на плоскости имеется система координат О х у, то задаются две прямые a и b . Прямой a соответствует общее уравнение вида A 1 x + B 1 y + C 1 = 0 , для прямой b - A 2 x + B 2 y + C 2 = 0 . Тогда M 0 (x 0 , y 0) является некоторой точкой плоскости необходимо выявить, будет ли точка М 0 являться точкой пересечения этих прямых.

Чтобы решить поставленную задачу, необходимо придерживаться определения. Тогда прямые должны пересекаться в точке, координаты которой являются решением заданных уравнений A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 . Значит, координаты точки пересечения подставляются во все заданные уравнения. Если они при подстановке дают верное тождество, тогда M 0 (x 0 , y 0) считается их точкой пересечения.

Пример 1

Даны две пересекающиеся прямые 5 x - 2 y - 16 = 0 и 2 x - 5 y - 19 = 0 . Будет ли точка М 0 с координатами (2 , - 3) являться точкой пересечения.

Решение

Чтобы пересечение прямых было действительным, необходимо, чтобы координаты точки М 0 удовлетворяли уравнениям прямых. Это проверяется при помощи их подстановки. Получаем, что

5 · 2 - 2 · (- 3) - 16 = 0 ⇔ 0 = 0 2 · 2 - 5 · (- 3) - 19 = 0 ⇔ 0 = 0

Оба равенства верные, значит М 0 (2 , - 3) является точкой пересечения заданных прямых.

Изобразим данное решение на координатной прямой рисунка, приведенного ниже.

Ответ: заданная точка с координатами (2 , - 3) будет являться точкой пересечения заданных прямых.

Пример 2

Пересекутся ли прямые 5 x + 3 y - 1 = 0 и 7 x - 2 y + 11 = 0 в точке M 0 (2 , - 3) ?

Решение

Для решения задачи необходимо подставить координаты точки во все уравнения. Получим, что

5 · 2 + 3 · (- 3) - 1 = 0 ⇔ 0 = 0 7 · 2 - 2 · (- 3) + 11 = 0 ⇔ 31 = 0

Второе равенство не является верным, значит, что заданная точка не принадлежит прямой 7 x - 2 y + 11 = 0 . Отсюда имеем, что точка М 0 не точка пересечения прямых.

Чертеж наглядно показывает, что М 0 - это не точка пересечения прямых. Они имеют общую точку с координатами (- 1 , 2) .

Ответ: точка с координатами (2 , - 3) не является точкой пересечения заданных прямых.

Переходим к нахождению координат точек пересечения двух прямых при помощи заданных уравнений на плоскости.

Задаются две пересекающиеся прямые a и b уравнениями вида A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 , расположенных в О х у. При обозначении точки пересечения М 0 получим, что следует продолжить поиск координат по уравнениям A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 .

Из определения очевидно, что М 0 является общей точкой пересечения прямых. В этом случае ее координаты должны удовлетворять уравнениям A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 . Иными словами это и есть решение полученной системы A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 y + C 2 = 0 .

Значит, для нахождения координат точки пересечения, необходимо все уравнения добавить в систему и решить ее.

Пример 3

Заданы две прямые x - 9 y + 14 = 0 и 5 x - 2 y - 16 = 0 на плоскости. необходимо найти их пересечение.

Решение

Данные по условию уравнения необходимо собрать в систему, после чего получим x - 9 y + 14 = 0 5 x - 2 y - 16 = 0 . Чтобы решить его, разрешается первое уравнение относительно x , подставляется выражение во второе:

x - 9 y + 14 = 0 5 x - 2 y - 16 = 0 ⇔ x = 9 y - 14 5 x - 2 y - 16 = 0 ⇔ ⇔ x = 9 y - 14 5 · 9 y - 14 - 2 y - 16 = 0 ⇔ x = 9 y - 14 43 y - 86 = 0 ⇔ ⇔ x = 9 y - 14 y = 2 ⇔ x = 9 · 2 - 14 y = 2 ⇔ x = 4 y = 2

Получившиеся числа являются координатами, которые необходимо было найти.

Ответ: M 0 (4 , 2) является точкой пересечения прямых x - 9 y + 14 = 0 и 5 x - 2 y - 16 = 0 .

Поиск координат сводится к решению системы линейных уравнений. Если по условию дан другой вид уравнения, тогда следует привести его к нормальному виду.

Пример 4

Определить координаты точек пересечения прямых x - 5 = y - 4 - 3 и x = 4 + 9 · λ y = 2 + λ , λ ∈ R .

Решение

Для начала необходимо привести уравнения к общему виду. Тогда получаем, что x = 4 + 9 · λ y = 2 + λ , λ ∈ R преобразуется таким образом:

x = 4 + 9 · λ y = 2 + λ ⇔ λ = x - 4 9 λ = y - 2 1 ⇔ x - 4 9 = y - 2 1 ⇔ ⇔ 1 · (x - 4) = 9 · (y - 2) ⇔ x - 9 y + 14 = 0

После чего беремся за уравнение канонического вида x - 5 = y - 4 - 3 и преобразуем. Получаем, что

x - 5 = y - 4 - 3 ⇔ - 3 · x = - 5 · y - 4 ⇔ 3 x - 5 y + 20 = 0

Отсюда имеем, что координаты – это точка пересечения

x - 9 y + 14 = 0 3 x - 5 y + 20 = 0 ⇔ x - 9 y = - 14 3 x - 5 y = - 20

Применим метод Крамера для нахождения координат:

∆ = 1 - 9 3 - 5 = 1 · (- 5) - (- 9) · 3 = 22 ∆ x = - 14 - 9 - 20 - 5 = - 14 · (- 5) - (- 9) · (- 20) = - 110 ⇒ x = ∆ x ∆ = - 110 22 = - 5 ∆ y = 1 - 14 3 - 20 = 1 · (- 20) - (- 14) · 3 = 22 ⇒ y = ∆ y ∆ = 22 22 = 1

Ответ: M 0 (- 5 , 1) .

Имеется еще способ для нахождения координат точки пересечения прямых, находящихся на плоскости. Он применим, когда одна из прямых задается параметрическими уравнениями, имеющими вид x = x 1 + a x · λ y = y 1 + a y · λ , λ ∈ R . Тогда вместо значения x подставляется x = x 1 + a x · λ и y = y 1 + a y · λ , где получим λ = λ 0 , соответствующее точке пересечения, имеющей координаты x 1 + a x · λ 0 , y 1 + a y · λ 0 .

Пример 5

Определить координаты точки пересечения прямой x = 4 + 9 · λ y = 2 + λ , λ ∈ R и x - 5 = y - 4 - 3 .

Решение

Необходимо выполнить подстановку в x - 5 = y - 4 - 3 выражением x = 4 + 9 · λ , y = 2 + λ , тогда получим:

4 + 9 · λ - 5 = 2 + λ - 4 - 3

При решении получаем, что λ = - 1 . Отсюда следует, что имеется точка пересечения между прямыми x = 4 + 9 · λ y = 2 + λ , λ ∈ R и x - 5 = y - 4 - 3 . Для вычисления координат необходимо подставить выражение λ = - 1 в параметрическое уравнение. Тогда получаем, что x = 4 + 9 · (- 1) y = 2 + (- 1) ⇔ x = - 5 y = 1 .

Ответ: M 0 (- 5 , 1) .

Для полного понимания темы, необходимо знать некоторые нюансы.

Предварительно необходимо понять расположение прямых. При их пересечении мы найдем координаты, в других случаях решения существовать не будет. Чтобы не делать эту проверку, можно составлять систему вида A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 + C 2 = 0 При наличии решения делаем вывод о том, что прямые пересекаются. Если решение отсутствует, то они параллельны. Когда система имеет бесконечное множество решений, тогда говорят, что они совпадают.

Пример 6

Даны прямые x 3 + y - 4 = 1 и y = 4 3 x - 4 . Определить, имеют ли они общую точку.

Решение

Упрощая заданные уравнения, получаем 1 3 x - 1 4 y - 1 = 0 и 4 3 x - y - 4 = 0 .

Следует собрать уравнения в систему для последующего решения:

1 3 x - 1 4 y - 1 = 0 1 3 x - y - 4 = 0 ⇔ 1 3 x - 1 4 y = 1 4 3 x - y = 4

Отсюда видно, что уравнения выражаются друг через друга, тогда получим бесконечное множество решений. Тогда уравнения x 3 + y - 4 = 1 и y = 4 3 x - 4 определяют одну и ту же прямую. Поэтому нет точек пересечения.

Ответ: заданные уравнения определяют одну и ту же прямую.

Пример 7

Найти координаты точки пересекающихся прямых 2 x + (2 - 3) y + 7 = 0 и 2 3 + 2 x - 7 y - 1 = 0 .

Решение

По условию возможно такое, прямые не будут пересекаться. Необходимо составить систему уравнений и решать. Для решения необходимо использовать метод Гаусса, так как с его помощью есть возможность проверить уравнение на совместимость. Получаем систему вида:

2 x + (2 - 3) y + 7 = 0 2 (3 + 2) x - 7 y - 1 = 0 ⇔ 2 x + (2 - 3) y = - 7 2 (3 + 2) x - 7 y = 1 ⇔ ⇔ 2 x + 2 - 3 y = - 7 2 (3 + 2) x - 7 y + (2 x + (2 - 3) y) · (- (3 + 2)) = 1 + - 7 · (- (3 + 2)) ⇔ ⇔ 2 x + (2 - 3) y = - 7 0 = 22 - 7 2

Получили неверное равенство, значит система не имеет решений. Делаем вывод, что прямые являются параллельными. Точек пересечения нет.

Второй способ решения.

Для начала нужно определить наличие пересечения прямых.

n 1 → = (2 , 2 - 3) является нормальным вектором прямой 2 x + (2 - 3) y + 7 = 0 , тогда вектор n 2 → = (2 (3 + 2) , - 7 - нормальный вектор для прямой 2 3 + 2 x - 7 y - 1 = 0 .

Необходимо выполнить проверку коллинеарности векторов n 1 → = (2 , 2 - 3) и n 2 → = (2 (3 + 2) , - 7) . Получим равенство вида 2 2 (3 + 2) = 2 - 3 - 7 . Оно верное, потому как 2 2 3 + 2 - 2 - 3 - 7 = 7 + 2 - 3 (3 + 2) 7 (3 + 2) = 7 - 7 7 (3 + 2) = 0 . Отсюда следует, что векторы коллинеарны. Значит, прямые являются параллельными и не имеют точек пересечения.

Ответ: точек пересечения нет, прямые параллельны.

Пример 8

Найти координаты пересечения заданных прямых 2 x - 1 = 0 и y = 5 4 x - 2 .

Решение

Для решения составляем систему уравнений. Получаем

2 x - 1 = 0 5 4 x - y - 2 = 0 ⇔ 2 x = 1 5 4 x - y = 2

Найдем определитель основной матрицы. Для этого 2 0 5 4 - 1 = 2 · (- 1) - 0 · 5 4 = - 2 . Так как он не равен нулю, система имеет 1 решение. Отсюда следует, что прямые пересекаются. Решим систему для нахождения координат точек пересечения:

2 x = 1 5 4 x - y = 2 ⇔ x = 1 2 4 5 x - y = 2 ⇔ x = 1 2 5 4 · 1 2 - y = 2 ⇔ x = 1 2 y = - 11 8

Получили, что точка пересечения заданных прямых имеет координаты M 0 (1 2 , - 11 8) .

Ответ: M 0 (1 2 , - 11 8) .

Нахождения координат точки пересечения двух прямых в пространстве

Таким же образом находятся точки пересечения прямых пространства.

Когда заданы прямые a и b в координатной плоскости О х у z уравнениями пересекающихся плоскостей, то имеется прямая a , которая может быть определена при помощи заданной системы A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 1 = 0 а прямая b - A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 .

Когда точка М 0 является точкой пересечения прямых, тогда ее координаты должны быть решениями обоих уравнений. Получим линейные уравнения в системе:

A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0

Рассмотрим подобные задания на примерах.

Пример 9

Найти координаты точки пересечения заданных прямых x - 1 = 0 y + 2 z + 3 = 0 и 3 x + 2 y + 3 = 0 4 x - 2 z - 4 = 0

Решение

Составляем систему x - 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x - 2 z - 4 = 0 и решим ее. Чтобы найти координаты, необходимо решать через матрицу. Тогда получим основную матрицу вида   A = 1 0 0 0 1 2 3 2 0 4 0 - 2 и расширенную T = 1 0 0 1 0 1 2 - 3 4 0 - 2 4 . Определяем ранг матрицы по Гауссу.

Получаем, что

1 = 1 ≠ 0 , 1 0 0 1 = 1 ≠ 0 , 1 0 0 0 1 2 3 2 0 = - 4 ≠ 0 , 1 0 0 1 0 1 2 - 3 3 2 0 - 3 4 0 - 2 4 = 0

Отсюда следует, что ранг расширенной матрицы имеет значение 3 . Тогда система уравнений x - 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x - 27 - 4 = 0 в результате дает только одно решение.

Базисный минор имеет определитель 1 0 0 0 1 2 3 2 0 = - 4 ≠ 0 , тогда последнее уравнение не подходит. Получим, что x - 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x - 2 z - 4 = 0 ⇔ x = 1 y + 2 z = - 3 3 x + 2 y - 3 . Решение системы x = 1 y + 2 z = - 3 3 x + 2 y = - 3 ⇔ x = 1 y + 2 z = - 3 3 · 1 + 2 y = - 3 ⇔ x = 1 y + 2 z = - 3 y = - 3 ⇔ ⇔ x = 1 - 3 + 2 z = - 3 y = - 3 ⇔ x = 1 z = 0 y = - 3 .

Значит, имеем, что точка пересечения x - 1 = 0 y + 2 z + 3 = 0 и 3 x + 2 y + 3 = 0 4 x - 2 z - 4 = 0 имеет координаты (1 , - 3 , 0) .

Ответ: (1 , - 3 , 0) .

Система вида A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 имеет только одно решение. Значит, прямые a и b пересекаются.

В остальных случаях уравнение не имеет решения, то есть и общих точек тоже. То есть невозможно найти точку с координатами, так как ее нет.

Поэтому система вида A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 решается методом Гаусса. При ее несовместимости прямые не являются пересекающимися. Если решений бесконечное множество, то они совпадают.

Можно произвести решение при помощи вычисления основного и расширенного ранга матрицы, после чего применить теорему Кронекера-Капелли. Получим одно, множество или полное отсутствие решений.

Пример 10

Заданы уравнения прямых x + 2 y - 3 z - 4 = 0 2 x - y + 5 = 0 и x - 3 z = 0 3 x - 2 y + 2 z - 1 = 0 . Найти точку пересечения.

Решение

Для начала составим систему уравнений. Получим, что x + 2 y - 3 z - 4 = 0 2 x - y + 5 = 0 x - 3 z = 0 3 x - 2 y + 2 z - 1 = 0 . решаем ее методом Гаусса:

1 2 - 3 4 2 - 1 0 - 5 1 0 - 3 0 3 - 2 2 1 ~ 1 2 - 3 4 0 - 5 6 - 13 0 - 2 0 - 4 0 - 8 11 - 11 ~ ~ 1 2 - 3 4 0 - 5 6 - 13 0 0 - 12 5 6 5 0 0 7 5 - 159 5 ~ 1 2 - 3 4 0 - 5 6 - 13 0 0 - 12 5 6 5 0 0 0 311 10

Очевидно, что система не имеет решений, значит прямые не пересекаются. Точки пересечения нет.

Ответ: нет точки пересечения.

Если прямые заданы при помощи кононических или параметрических уравнений, нужно привести к виду уравнений пересекающихся плоскостей, после чего найти координаты.

Пример 11

Заданы две прямые x = - 3 - λ y = - 3 · λ z = - 2 + 3 · λ , λ ∈ R и x 2 = y - 3 0 = z 5 в О х у z . Найти точку пересечения.

Решение

Задаем прямые уравнениями двух пересекающихся плоскостей. Получаем, что

x = - 3 - λ y = - 3 · λ z = - 2 + 3 · λ ⇔ λ = x + 3 - 1 λ = y - 3 λ = z + 2 3 ⇔ x + 3 - 1 = y - 3 = z + 2 3 ⇔ ⇔ x + 3 - 1 = y - 3 x + 3 - 1 = z + 2 3 ⇔ 3 x - y + 9 = 0 3 x + z + 11 = 0 x 2 = y - 3 0 = z 5 ⇔ y - 3 = 0 x 2 = z 5 ⇔ y - 3 = 0 5 x - 2 z = 0

Находим координаты 3 x - y + 9 = 0 3 x + z + 11 = 0 y - 3 = 0 5 x - 2 z = 0 , для этого посчитаем ранги матрицы. Ранг матрицы равен 3 , а базисный минор 3 - 1 0 3 0 1 0 1 0 = - 3 ≠ 0 , значит, что из системы необходимо исключить последнее уравнение. Получаем, что

3 x - y + 9 = 0 3 x + z + 11 = 0 y - 3 = 0 5 x - 2 z = 0 ⇔ 3 x - y + 9 = 0 3 x + z + 11 = 0 y - 3 = 0

Решим систему методом Крамер. Получаем, что x = - 2 y = 3 z = - 5 . Отсюда получаем, что пересечение заданных прямых дает точку с координатами (- 2 , 3 , - 5) .

Ответ: (- 2 , 3 , - 5) .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

При решении некоторых геометрических задач методом координат приходится находить координаты точки пересечения прямых. Наиболее часто приходится искать координаты точки пересечения двух прямых на плоскости, однако иногда возникает необходимость в определении координат точки пересечения двух прямых в пространстве. В этой статье мы как раз разберемся с нахождением координат точки, в которой пересекаются две прямые.

Навигация по странице.

Точка пересечения двух прямых – определение.

Давайте для начала дадим определение точки пересечения двух прямых.

В разделе взаимное расположение прямых на плоскости показано, что две прямые на плоскости могут либо совпадать (при этом они имеют бесконечно много общих точек), либо быть параллельными (при этом две прямые не имеют общих точек), либо пересекаться, имея одну общую точку. Вариантов взаимного расположения двух прямых в пространстве больше – они могут совпадать (иметь бесконечно много общих точек), могут быть параллельными (то есть, лежать в одной плоскости и не пересекаться), могут быть скрещивающимися (не лежащими в одной плоскости), а также могут иметь одну общую точку, то есть, пересекаться. Итак, две прямые и на плоскости и в пространстве называются пересекающимися, если они имеют одну общую точку.

Из определения пересекающихся прямых следует определение точки пересечения прямых : точка, в которой пересекаются две прямые, называется точкой пересечения этих прямых. Другими словами, единственная общая точка двух пересекающихся прямых есть точка пересечения этих прямых.

Приведем для наглядности графическую иллюстрацию точки пересечения двух прямых на плоскости и в пространстве.

К началу страницы

Нахождение координат точки пересечения двух прямых на плоскости.

Прежде чем находить координаты точки пересечения двух прямых на плоскости по их известным уравнениям, рассмотрим вспомогательную задачу.

Oxy a и b . Будем считать, что прямой a соответствует общее уравнение прямой вида , а прямой b – вида . Пусть – некоторая точка плоскости, и требуется выяснить, является ли точка М 0 точкой пересечения заданных прямых.

Решим поставленную задачу.

Если M 0 a и b , то по определению она принадлежит и прямой a и прямой b , то есть, ее координаты должны удовлетворять одновременно и уравнению и уравнению . Следовательно, нам нужно подставить координаты точки М 0 в уравнения заданных прямых и посмотреть, получаются ли при этом два верных равенства. Если координаты точки М 0 удовлетворяют обоим уравнениям и , то – точка пересечения прямых a и b , в противном случае М 0 .

Является ли точка М 0 с координатами (2, -3) точкой пересечения прямых 5x-2y-16=0 и2x-5y-19=0 ?

Если М 0 действительно точка пересечения заданных прямых, то ее координаты удовлетворяют уравнениям прямых. Проверим это, подставив координаты точки М 0 в заданные уравнения:

Получили два верных равенства, следовательно, М 0 (2, -3) - точка пересечения прямых5x-2y-16=0 и 2x-5y-19=0 .

Для наглядности приведем чертеж, на котором изображены прямые и видны координаты точки их пересечения.

да, точка М 0 (2, -3) является точкой пересечения прямых 5x-2y-16=0 и 2x-5y-19=0 .

Пересекаются ли прямые 5x+3y-1=0 и 7x-2y+11=0 в точке M 0 (2, -3) ?

Подставим координаты точки М 0 в уравнения прямых, этим действием будем осуществлена проверка принадлежности точки М 0 обеим прямым одновременно:

Так как второе уравнение при подстановке в него координат точки М 0 не обратилось в верное равенство, то точка М 0 не принадлежит прямой 7x-2y+11=0 . Из этого факта можно сделать вывод о том, что точка М 0 не является точкой пересечения заданных прямых.

На чертеже также хорошо видно, что точка М 0 не является точкой пересечения прямых5x+3y-1=0 и 7x-2y+11=0 . Очевидно, заданные прямые пересекаются в точке с координатами (-1, 2) .

М 0 (2, -3) не является точкой пересечения прямых 5x+3y-1=0 и 7x-2y+11=0 .

Теперь можно переходить к задаче нахождения координат точки пересечения двух прямых по заданным уравнениям прямых на плоскости.

Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy и заданы две пересекающиеся прямые a и b уравнениями и соответственно. Обозначим точку пересечения заданных прямых как М 0 и решим следующую задачу: найти координаты точки пересечения двух прямых a и b по известным уравнениям этих прямых и .

Точка M 0 принадлежит каждой из пересекающихся прямых a и b по определению. Тогда координаты точки пересечения прямых a и b удовлетворяют одновременно и уравнению и уравнению . Следовательно, координаты точки пересечения двух прямых a и b являются решением системы уравнений (смотрите статью решение систем линейных алгебраических уравнений).

Таким образом, чтобы найти координаты точки пересечения двух прямых, определенных на плоскости общими уравнениями, нужно решить систему, составленную из уравнений заданных прямых.

Рассмотрим решение примера.

Найдите точку пересечения двух прямых, определенных в прямоугольной системе координат на плоскости уравнениями x-9y+14=0 и 5x-2y-16=0 .

Нам даны два общих уравнения прямых, составим из них систему: . Решения полученной системы уравнений легко находятся, если разрешить ее первое уравнение относительно переменной x и подставить это выражение во второе уравнение:

Найденное решение системы уравнений дает нам искомые координаты точки пересечения двух прямых.

M 0 (4, 2) – точка пересечения прямых x-9y+14=0 и 5x-2y-16=0 .

Итак, нахождение координат точки пересечения двух прямых, определенных общими уравнениями на плоскости, сводится к решению системы из двух линейных уравнений с двумя неизвестными переменными. А как же быть, если прямые на плоскости заданы не общими уравнениями, а уравнениями другого вида (смотрите виды уравнения прямой на плоскости)? В этих случаях можно сначала привести уравнения прямых к общему виду, а уже после этого находить координаты точки пересечения.

Перед нахождением координат точки пересечения заданных прямых приведем их уравнения к общему виду. Переход от параметрических уравнений прямой к общему уравнению этой прямой выглядит следующим образом:

Теперь проведем необходимые действия с каноническим уравнением прямой :

Таким образом, искомые координаты точки пересечения прямых являются решением системы уравнений вида . Используем для ее решения метод Крамера:

M 0 (-5, 1)

Существует еще один способ нахождения координат точки пересечения двух прямых на плоскости. Его удобно применять, когда одна из прямых задана параметрическими уравнениями вида , а другая – уравнением прямой иного вида. В этом случае в другое уравнение вместо переменных x и y можно подставить выражения и , откуда можно будет получить значение , которое соответствует точке пересечения заданных прямых. При этом точка пересечения прямых имеет координаты .

Найдем координаты точки пересечения прямых из предыдущего примера этим способом.

Определите координаты точки пересечения прямых и .

Подставим в уравнение прямой выражения :

Решив полученное уравнение, получаем . Это значение соответствует общей точке прямых и . Вычисляем координаты точки пересечения, подставив в параметрические уравнения прямой:
.

M 0 (-5, 1) .

Для полноты картины следует обговорить еще один момент.

Перед нахождением координат точки пересечения двух прямых на плоскости полезно убедиться в том, что заданные прямые действительно пересекаются. Если выяснится, что исходные прямые совпадают или параллельны, то о нахождении координат точки пересечения таких прямых не может быть и речи.

Можно, конечно, обойтись и без такой проверки, а сразу составить систему уравнений вида и решить ее. Если система уравнений имеет единственное решение, то оно дает координаты точки, в которой исходные прямые пересекаются. Если система уравнений решений не имеет, то можно делать вывод о параллельности исходных прямых (так как не существует такой пары действительных чисел x и y , которая бы удовлетворяла одновременно обоим уравнениям заданных прямых). Из наличия бесконечного множества решений системы уравнений следует, что исходные прямые имеют бесконечно много общих точек, то есть, совпадают.

Рассмотрим примеры, подходящие под эти ситуации.

Выясните, пересекаются ли прямые и , и если пересекаются, то найдите координаты точки пересечения.

Заданным уравнениям прямых соответствуют уравнения и . Решим систему, составленную из этих уравнений .

Очевидно, что уравнения системы линейно выражаются друг через друга (второе уравнение системы получается из первого умножением обеих его частей на 4 ), следовательно, система уравнений имеет бесконечное множество решений. Таким образом, уравнения и определяют одну и ту же прямую, и мы не можем говорить о нахождении координат точки пересечения этих прямых.

уравнения и определяют в прямоугольной системе координатOxy одну и ту же прямую, поэтому мы не можем говорить о нахождении координат точки пересечения.

Найдите координаты точки пересечения прямых и , если это возможно.

Условие задачи допускает, что прямые могут быть не пересекающимися. Составим систему из данных уравнений. Применим для ее решения метод Гаусса, так как он позволяет установить совместность или несовместность системы уравнений, а в случае ее совместности найти решение:

Последнее уравнение системы после прямого хода метода Гаусса обратилось в неверное равенство, следовательно, система уравнений не имеет решений. Отсюда можно сделать вывод, что исходные прямые параллельны, и мы не можем говорить о нахождении координат точки пересечения этих прямых.

Второй способ решения.

Давайте выясним, пересекаются ли заданные прямые.

Нормальный вектор прямой , а вектор является нормальным вектором прямой . Проверим выполнение условия коллинеарности векторов и : равенство верно, так как , следовательно, нормальные векторы заданных прямых коллинеарны. Тогда, эти прямые параллельны или совпадают. Таким образом, мы не можем найти координаты точки пересечения исходных прямых.

координаты точки пересечения заданных прямых найти невозможно, так как эти прямые параллельны.

Найдите координаты точки пересечения прямых 2x-1=0 и , если они пересекаются.

Составим систему из уравнений, которые являются общими уравнениями заданных прямых: . Определитель основной матрицы этой системы уравнений отличен от нуля , поэтому система уравнений имеет единственное решение, что свидетельствует о пересечении заданных прямых.

Для нахождения координат точки пересечения прямых нам нужно решить систему:

Полученное решение дает нам координаты точки пересечения прямых, то есть, - точка пересечения прямых 2x-1=0 и .

К началу страницы

Нахождение координат точки пересечения двух прямых в пространстве.

Координаты точки пересечения двух прямых в трехмерном пространстве находятся аналогично.

Пусть пересекающиеся прямые a и b заданы в прямоугольной системе координат Oxyz уравнениями двух пересекающихся плоскостей, то есть, прямая a определяется системой вида , а прямая b - . Пусть М 0 – точка пересечения прямых a и b . Тогда точка М 0 по определению принадлежит и прямой a и прямойb , следовательно, ее координаты удовлетворяют уравнениям обеих прямых. Таким образом, координаты точки пересечения прямых a и b представляют собой решение системы линейных уравнений вида . Здесь нам пригодится информация из разделарешение систем линейных уравнений, в которых число уравнений не совпадает с числом неизвестных переменных.

Рассмотрим решения примеров.

Найдите координаты точки пересечения двух прямых, заданных в пространстве уравнениями и .

Составим систему уравнений из уравнений заданных прямых: . Решение этой системы даст нам искомые координаты точки пересечения прямых в пространстве. Найдем решение записанной системы уравнений.

Основная матрица системы имеет вид , а расширенная - .

Определим ранг матрицы А и ранг матрицы T . Используем метод окаймляющих миноров, при этом не будем подробно описывать вычисление определителей (при необходимости обращайтесь к статье вычисление определителя матрицы):

Таким образом, ранг основной матрицы равен рангу расширенной матрицы и равен трем.

Следовательно, система уравнений имеет единственное решение.

Базисным минором примем определитель , поэтому из системы уравнений следует исключить последнее уравнение, так как оно не участвует в образовании базисного минора. Итак,

Решение полученной системы легко находится:

Таким образом, точка пересечения прямых и имеет координаты (1, -3, 0) .

(1, -3, 0) .

Следует отметить, что система уравнений имеет единственное решение тогда и только тогда, когда прямые a и b пересекаются. Если же прямые а и b параллельные или скрещивающиеся, то последняя система уравнений решений не имеет, так как в этом случае прямые не имеют общих точек. Если прямые a и b совпадают, то они имеют бесконечное множество общих точек, следовательно, указанная система уравнений имеет бесконечное множество решений. Однако в этих случаях мы не можем говорить о нахождении координат точки пересечения прямых, так как прямые не являются пересекающимися.

Таким образом, если мы заранее не знаем, пересекаются заданные прямые a и b или нет, то разумно составить систему уравнений вида и решить ее методом Гаусса. Если получим единственное решение, то оно будет соответствовать координатам точки пересечения прямых a и b . Если система окажется несовместной, то прямые a и b не пересекаются. Если же система будет иметь бесконечное множество решений, то прямые a и b совпадают.

Можно обойтись и без использования метода Гаусса. Как вариант, можно вычислить ранги основной и расширенной матриц этой системы, и на основании полученных данных и теоремы Кронекера-Капелли сделать вывод или о существовании единственного решения, или о существовании множества решений, или об отсутствии решений. Это дело вкуса.

Если прямые и пересекаются, то определите координаты точки пересечения.

Составим систему из заданных уравнений: . Решим ее методом Гаусса в матричной форме:

Стало видно, что система уравнений не имеет решений, следовательно, заданные прямые не пересекаются, и не может быть и речи о поиске координат точки пересечения этих прямых.

мы не можем найти координаты точки пересечения заданных прямых, так как эти прямые не пересекаются.

Когда пересекающиеся прямые заданы каноническими уравнениями прямой в пространствеили параметрическими уравнениями прямой в пространстве, то следует сначала получить их уравнения в виде двух пересекающихся плоскостей, а уже после этого находить координаты точки пересечения.

Две пересекающиеся прямые заданы в прямоугольной системе координат Oxyz уравнениями и . Найдите координаты точки пересечения этих прямых.

Зададим исходные прямые уравнениями двух пересекающихся плоскостей:

Для нахождения координат точки пересечения прямых осталось решить систему уравнений . Ранг основной матрицы этой системы равен рангу расширенной матрицы и равен трем (рекомендуем проверить этот факт). В качестве базисного минора примем , следовательно, из системы можно исключить последнее уравнение . Решив полученную систему любым методом (например методом Крамера) получаем решение . Таким образом, точка пересечения прямых и имеет координаты (-2, 3, -5) .

Если прямые пересекаются в точке , то её координаты являются решениемсистемы линейных уравнений

Как найти точку пересечения прямых? Решить систему.

Вот вам и геометрический смысл системы двух линейных уравнений с двумя неизвестными – это две пересекающиеся (чаще всего) прямые на плоскости.

Задачу удобно разбить на несколько этапов. Анализ условия подсказывает, что необходимо:
1) Составить уравнение одной прямой.
2) Составить уравнение второй прямой.
3) Выяснить взаимное расположение прямых.
4) Если прямые пересекаются, то найти точку пересечения.

Пример 13.

Найти точку пересечения прямых

Решение : Точку пересечения целесообразно искать аналитическим методом. Решим систему:

Ответ :

П.6.4. Расстояние от точки до прямой

Перед нами прямая полоса реки и наша задача состоит в том, чтобы дойти до неё кратчайшим путём. Препятствий нет, и самым оптимальным маршрутом будет движение по перпендикуляру. То есть, расстояние от точки до прямой – это длина перпендикулярного отрезка.

Расстояние в геометрии традиционно обозначают греческой буквой «ро», например: – расстояние от точки «эм» до прямой «дэ».

Расстояние от точкидо прямой выражается формулой

Пример 14.

Найти расстояние от точки до прямой

Решение : всё что нужно - аккуратно подставить числа в формулу и провести вычисления:

Ответ :

П.6.5. Угол между прямыми.

Пример 15.

Найти угол между прямыми .

1. Проверяем перпендикулярны ли прямые:

Вычислим скалярное произведение направляющих векторов прямых:
, значит, прямые не перпендикулярны.
2. Угол между прямыми найдём с помощью формулы:

Таким образом:

Ответ :

Кривые второго порядка. Окружность

Пусть на плоскости задана прямоугольная система координат 0ху.

Кривой второго порядка называется линия на плоскости, определяемая уравнением второй степени относительно текущих координат точки М(х, у, z). В общем случае это уравнение имеет вид:

где коэффициенты А, В, С, D, E, L – любые действительные числа, причем хотя бы одно из чисел А, B, С отлично от нуля.



1.Окружностью называется множество точек на плоскости, расстояние от которых до фиксированной точки М 0 (х 0 , у 0) постоянно и равно R. Точка М 0 называется центром окружности, а число R – ее радиусом

– уравнение окружности с центром в точке М 0 (х 0 , у 0) и радиусом R.

Если центр окружности совпадает с началом координат, то имеем:

– каноническое уравнение окружности.

Эллипс.

Эллипсом называется множество точек на плоскости, для каждой из которых сумма расстояний до двух данных точек есть величина постоянная (причем эта величина больше расстояний между данными точками). Данные точки называются фокусами эллипса .

– каноническое уравнение эллипса.

Отношение называется эксцентриситетом эллипса и обозначается: , . Так как , то < 1.

Следовательно, с уменьшением отношение стремится к 1, т.е. b мало отличается от а и форма эллипса становится ближе к форме окружности. В предельном случае при , получается окружность, уравнение которой есть

х 2 + у 2 = а 2 .

Гипербола

Гиперболой называется множество точек на плоскости, для каждой из которых абсолютная величина разности расстояний до двух данных точек, называемыхфокусами , есть величина постоянная (при условии, что эта величина меньше расстояния между фокусами и не равна 0).

Пусть F 1 , F 2 – фокусы, расстояние между ними обозначим через 2с, параметром параболы).

– каноническое уравнение параболы.

Заметим, что уравнение при отрицательном р также задает параболу, которая будет расположена слева от оси 0у. Уравнение описывает параболу, симметричную относительно оси 0у, лежащую выше оси 0х при р > 0 и лежащую ниже оси 0х при р < 0.

Пересечения на оси абсцисс необходимо решить уравнение y₁=y₂, то есть k₁x+b₁=k₂x+b₂.

Преобразуйте данное неравенство, получив k₁x-k₂x=b₂-b₁. Теперь выразите x: x=(b₂-b₁)/(k₁-k₂). Таким образом вы найдете точку пересечения графиков, которая находится по оси OX. Найдите точку пересечения на оси ординат. Просто подставьте в какую-либо из функций значение x, которое вы нашли ранее.

Предыдущий вариант подходит для графиков. Если же функция , воспользуйтесь следующими инструкциями. Таким же способом, как и с линейной функцией, найдите значение x. Для этого решите квадратное уравнение. В уравнении 2x² + 2x - 4=0 найдите (уравнение дано для примера). Для этого используйте формулу: D= b² – 4ac, где b – значение перед X, а c – это числовое значение.

Подставив числовые значения, получите выражение вида D= 4 + 4*4= 4+16= 20. От значения дискриминанта зависят уравнения. Теперь к значению переменной b со знаком «-» прибавьте или отнимите (по очереди) корень из полученного дискриминанта, и поделите на удвоенное произведение коэффициента a. Так вы найдете корни уравнения, то есть координаты точек пересечения.

Графики функции имеют особенность: ось OX будет пересекаться два раза, то есть вы найдете две координаты оси абсцисс. Если вы получите периодическое значение зависимости X от Y, тогда знайте, что график пересекается в бесконечном количестве точек с осью абсцисс. Проверьте, ли вы нашли точки пересечения. Для этого подставьте значения X в уравнение f(x)=0.

Источники:

  • Нахождение точек пересечения прямых

Если вы знаете значение а, то вы можете сказать, что решили квадратное уравнение, потому как его корни будут найдены очень легко.

Вам понадобится

  • -формула дискриминанта квадратного уравнения;
  • -знание таблицы умножения

Инструкция

Видео по теме

Полезный совет

Дискриминант квадртаного уравнения может быть положительным, отрицательным, или равняться 0.

Источники:

Совет 3: Как найти координаты точек пересечения графика функции

График функции y = f (х) - это множество всех точек плоскости, координаты х, у которых удовлетворяют соотношению y = f(x). График функции наглядно иллюстрирует поведение и свойства функции. Для построения графика обычно выбирается несколько значений аргумента х и для них вычисляются соответствующие значения функции y=f(x). Для более точного и наглядного построения графика полезно найти его точки пересечения с осями координат.

Инструкция

При пересечении оси абсцисс (оси Х) значение функции равно 0, т.е. y=f(x)=0. Для вычисления х необходимо решить уравнение f(x)=0. В случае функции получаем уравнение ax+b=0, и находим x=-b/a.

Таким образом, ось Х пересекается в точке (-b/a,0).

В более сложных случаях, например, в случае квадратичной зависимости y от х, уравнение f(x)=0 имеет два корня, следовательно, ось абсцисс пересекается дважды. В случае зависимости y от х, например y=sin(x), имеет бесконечное число точек пересечения с осью Х.

Для проверки правильности нахождения координат точек пересечения графика функции с осью Х необходимо подставить найденные значения х f(x). Значение выражения при любом из вычисленных х должно быть равно 0.

Инструкция

Сначала необходимо обговорить выбор удобной для решения задачи системы координат. Обычно в задачах такого рода одну из треугольника помещают на оси 0Х так, чтобы одна точка совпадала с началом координат. Поэтому не стоит отходить от общепринятых канонов решения и сделать также (см. рис. 1). Способ задание самого треугольника не играет принципиальной роли, так как всегда можно перейти от одного из них к (в чем вы в дальнейшем сможете убедиться).

Пусть искомый треугольник задан двумя векторами его сторон АС и АВ a(x1, y1) и b(x2, y2), соот-ветственно. Более того, по построению y1=0. Третья сторона ВС соответствует c=a-b, c(x1-x2,y1 -y2), согласно данной иллюстрации. Точка А помещена в начало координат, то есть ее координаты А(0, 0). Легко также заметить, что координаты В (x2, y2), a C (x1, 0). Отсюда можно сделать вывод, что задание треугольника двумя векторами автоматически совпало с его заданием тремя точками.

Далее следует достроить искомый треугольник до соответствующего ему по размерам параллелограмма ABDC. При этом , что в точке пересечения диагоналей параллелограмма они делятся , так, что АQ медиана треугольника АВС, опускается из А на сторону ВС. Вектор диагонали s содержит эту и является, по правилу параллелограмма, геометрической суммой a и b. Тогда s = a + b, а его координаты s(x1+x2, y1+y2)= s(x1+x2, y2). Такие же координаты будут и у точки D(x1+x2, y2).

Теперь можно переходить к составлению уравнение прямой, содержащей s, медиану AQ и, са-мое главное, искомую точку пересечения медиан H. Так как сам вектор s является направляю-щим для данной прямой, а также известна точка А(0, 0), принадлежащая ей, то самое простое – это использовать уравнение плоской прямой в каноническом виде:(x-x0)/m=(y-y0)/n.Здесь (x0, y0) координаты произвольной точки прямой (точка А(0, 0)), а (m, n) – координаты s (вектор (x1+x2, y2). И так, искомая прямая l1 будет иметь вид:x/(x1+x2)=y/ y2.

Самый способ нахождения – ее в пересечении . Поэтому следует найти еще одну прямую, содержащую т. Н. Для этого на рис. 1 построение еще одного параллелограмма АPBC, диагональ которого g=a+c =g(2x1-x2, -y2) содержит вторую медиану CW, опущенную из С на сторону АВ. Это диагональ содержит точку С(x1, 0), координаты которой будут играть роль (x0, y0), а направляющий вектор здесь будет g(m, n)=g(2x1-x2, -y2). Отсюда l2 задается уравнением: (x-x1)/(2 x1-x2)=y/(- y2).


При решении некоторых геометрических задач методом координат приходится находить координаты точки пересечения прямых. Наиболее часто приходится искать координаты точки пересечения двух прямых на плоскости, однако иногда возникает необходимость в определении координат точки пересечения двух прямых в пространстве. В этой статье мы как раз разберемся с нахождением координат точки, в которой пересекаются две прямые.

Навигация по странице.

Точка пересечения двух прямых – определение.

Давайте для начала дадим определение точки пересечения двух прямых.

Таким образом, чтобы найти координаты точки пересечения двух прямых, определенных на плоскости общими уравнениями, нужно решить систему, составленную из уравнений заданных прямых.

Рассмотрим решение примера.

Пример.

Найдите точку пересечения двух прямых, определенных в прямоугольной системе координат на плоскости уравнениями x-9y+14=0 и 5x-2y-16=0 .

Решение.

Нам даны два общих уравнения прямых, составим из них систему: . Решения полученной системы уравнений легко находятся, если разрешить ее первое уравнение относительно переменной x и подставить это выражение во второе уравнение:

Найденное решение системы уравнений дает нам искомые координаты точки пересечения двух прямых.

Ответ:

M 0 (4, 2) x-9y+14=0 и 5x-2y-16=0 .

Итак, нахождение координат точки пересечения двух прямых, определенных общими уравнениями на плоскости, сводится к решению системы из двух линейных уравнений с двумя неизвестными переменными. А как же быть, если прямые на плоскости заданы не общими уравнениями, а уравнениями другого вида (смотрите виды уравнения прямой на плоскости)? В этих случаях можно сначала привести уравнения прямых к общему виду , а уже после этого находить координаты точки пересечения.

Пример.

и .

Решение.

Перед нахождением координат точки пересечения заданных прямых приведем их уравнения к общему виду. Переход от параметрических уравнений прямой к общему уравнению этой прямой выглядит следующим образом:

Теперь проведем необходимые действия с каноническим уравнением прямой :

Таким образом, искомые координаты точки пересечения прямых являются решением системы уравнений вида . Используем для ее решения :

Ответ:

M 0 (-5, 1)

Существует еще один способ нахождения координат точки пересечения двух прямых на плоскости. Его удобно применять, когда одна из прямых задана параметрическими уравнениями вида , а другая – уравнением прямой иного вида. В этом случае в другое уравнение вместо переменных x и y можно подставить выражения и , откуда можно будет получить значение , которое соответствует точке пересечения заданных прямых. При этом точка пересечения прямых имеет координаты .

Найдем координаты точки пересечения прямых из предыдущего примера этим способом.

Пример.

Определите координаты точки пересечения прямых и .

Решение.

Подставим в уравнение прямой выражения :

Решив полученное уравнение, получаем . Это значение соответствует общей точке прямых и . Вычисляем координаты точки пересечения, подставив в параметрические уравнения прямой:
.

Ответ:

M 0 (-5, 1) .

Для полноты картины следует обговорить еще один момент.

Перед нахождением координат точки пересечения двух прямых на плоскости полезно убедиться в том, что заданные прямые действительно пересекаются. Если выяснится, что исходные прямые совпадают или параллельны, то о нахождении координат точки пересечения таких прямых не может быть и речи.

Можно, конечно, обойтись и без такой проверки, а сразу составить систему уравнений вида и решить ее. Если система уравнений имеет единственное решение, то оно дает координаты точки, в которой исходные прямые пересекаются. Если система уравнений решений не имеет, то можно делать вывод о параллельности исходных прямых (так как не существует такой пары действительных чисел x и y , которая бы удовлетворяла одновременно обоим уравнениям заданных прямых). Из наличия бесконечного множества решений системы уравнений следует, что исходные прямые имеют бесконечно много общих точек, то есть, совпадают.

Рассмотрим примеры, подходящие под эти ситуации.

Пример.

Выясните, пересекаются ли прямые и , и если пересекаются, то найдите координаты точки пересечения.

Решение.

Заданным уравнениям прямых соответствуют уравнения и . Решим систему, составленную из этих уравнений .

Очевидно, что уравнения системы линейно выражаются друг через друга (второе уравнение системы получается из первого умножением обеих его частей на 4 ), следовательно, система уравнений имеет бесконечное множество решений. Таким образом, уравнения и определяют одну и ту же прямую, и мы не можем говорить о нахождении координат точки пересечения этих прямых.

Ответ:

Уравнения и определяют в прямоугольной системе координат Oxy одну и ту же прямую, поэтому мы не можем говорить о нахождении координат точки пересечения.

Пример.

Найдите координаты точки пересечения прямых и , если это возможно.

Решение.

Условие задачи допускает, что прямые могут быть не пересекающимися. Составим систему из данных уравнений. Применим для ее решения , так как он позволяет установить совместность или несовместность системы уравнений, а в случае ее совместности найти решение:

Последнее уравнение системы после прямого хода метода Гаусса обратилось в неверное равенство, следовательно, система уравнений не имеет решений. Отсюда можно сделать вывод, что исходные прямые параллельны, и мы не можем говорить о нахождении координат точки пересечения этих прямых.

Второй способ решения.

Давайте выясним, пересекаются ли заданные прямые.

- нормальный вектор прямой , а вектор является нормальным вектором прямой . Проверим выполнение и : равенство верно, так как , следовательно, нормальные векторы заданных прямых коллинеарны. Тогда, эти прямые параллельны или совпадают. Таким образом, мы не можем найти координаты точки пересечения исходных прямых.

Ответ:

Координаты точки пересечения заданных прямых найти невозможно, так как эти прямые параллельны.

Пример.

Найдите координаты точки пересечения прямых 2x-1=0 и , если они пересекаются.

Решение.

Составим систему из уравнений, которые являются общими уравнениями заданных прямых: . Определитель основной матрицы этой системы уравнений отличен от нуля , поэтому система уравнений имеет единственное решение, что свидетельствует о пересечении заданных прямых.

Для нахождения координат точки пересечения прямых нам нужно решить систему:

Полученное решение дает нам координаты точки пересечения прямых, то есть, 2x-1=0 и .

Ответ:

Нахождение координат точки пересечения двух прямых в пространстве.

Координаты точки пересечения двух прямых в трехмерном пространстве находятся аналогично.

Рассмотрим решения примеров.

Пример.

Найдите координаты точки пересечения двух прямых, заданных в пространстве уравнениями и .

Решение.

Составим систему уравнений из уравнений заданных прямых: . Решение этой системы даст нам искомые координаты точки пересечения прямых в пространстве. Найдем решение записанной системы уравнений.

Основная матрица системы имеет вид , а расширенная - .

Определим А и ранг матрицы T . Используем

Понравилась статья? Поделитесь ей