Контакты

Что такое боксит? Свойства боксита. Применение боксита

И глинозёмосодержащих огнеупоров. Содержание глинозёма в промышленных бокситах колеблется от 40% до 60% и выше. Используется также в качестве флюса в чёрной металлургии .

Обычно, бокситы представляют собой землистую глиноподобную массу, которая может иметь полосчатую, пизолитовую (гороховидную) либо однородную текстуру. В обычных условиях выветривания полевые шпаты (минералы , составляющие большую часть земной коры и являющиеся алюмосиликатами) разлагаются с образованием глин, но в условиях жаркого климата и высокой влажности конечным продуктом их разложения могут оказаться бокситы, т. к. подобная обстановка благоприятствует выносу щёлочей и кремнезёма , особенно из сиенитов или габбро. Бокситы перерабатывают в алюминий поэтапно: сначала получают оксид алюминия (глинозём), а затем металлический алюминий (электролитическим способом в присутствии криолита).

Добыча бокситов

Более 90% мировых общих запасов бокситов сосредоточено в 18 странах с тропическим или субтропическим климатом. Это не случайно, так как лучшие бокситовые месторождения приурочены к так называемым латеритным корам, образующимся в результате длительного выветривания алюмосиликатных пород в условиях жаркого влажного климата. В латеритных месторождениях лежит около 9/10 всех мировых бокситов. Самыми большими общими запасами обладают Гвинея (20 млрд. т), Австралия (7 млрд. т), Бразилия (6 млрд. т), Вьетнам (3 млрд. т), Индия (2,5 млрд. т), Индонезия (2 млрд. т). В недрах этих шести стран заключено почти 2/3 общих запасов бокситов. Наиболее крупными подтверждёнными запасами обладают Гвинея (21% мировых), Бразилия (15%), Австралия (11%), Ямайка (7%), Камерун (6%), Мали (4,5%). В них сосредоточено 65% мировых подтверждённых запасов бокситов.

Россия не обладает достаточными для внутреннего потребления запасами бокситов, а её доля в мировых запасах этого сырья не достигает и 1%.

В России наиболее высоким качеством обладают бокситы Северо-Уральского бокситоносного района. Наиболее перспективный новый источник этого сырья - Средне-Тиманская группа месторождений на северо-западе Республики Коми , в 150 км от г. Ухты (запасы до глубины 200 м - более 200 млн. т). Разведанные запасы Среднего Тимана сконцентрированы на Вежаю-Ворыквинском (150 млн. т), Верхнещугорском (66 млн. т) и Восточном (48 млн. т) месторождениях. Эти месторождения находятся в необжитом районе, открыты в конце 60-х годов и детально разведаны в 80-х годах. Качество руд среднее. В г. по автозимнику через Ухту на Уральский алюминиевый завод в Каменске-Уральском была доставлена первая партия тиманских бокситов (12 тыс. т). Промышленные испытания подтвердили возможность использования этого сырья на уральских заводах.

Нефелинсодержащие породы используются в качестве алюминиевого сырья только в России. Разрабатываются Кия-Шалтырское месторождение в Кемеровской обл. и месторождения Кукисвумчорр, Юкспор, Расвумчорр на Кольском полуострове . Общие запасы нефелиновых руд в России - около 7 млрд. т, подтверждённые - 5 млрд. т. В современных экономических условиях рентабельность их разработки оказывается под вопросом.

Третий вид алюминиевых руд - алуниты, разрабатывают только в Азербайджане (месторождение Заглик). Подтверждённые запасы алунитов в Азербайджане оцениваются в 200 тыс. т. В Узбекистане разведано Гушсайское месторождение алунитовых руд с общими запасами 130 млн. т. По мнению республиканских экспертов, эти руды, после предварительного обогащения, могут перерабатываться в глинозём.


Wikimedia Foundation . 2010 .

Смотреть что такое "Бокситы" в других словарях:

    Алюминиевые руды, состоящие в основном из гидроксидов алюминия (28 80%) и железа (гиббсита, бемита и диаспора, гидрогетита и др.). Главным образом осадочные. Вредная примесь SiO2. Плотность 1800 3100 кг/м³. Сырье для получения алюминия, а… … Большой Энциклопедический словарь

    - (от назв. местности Ле Бо, Lex Baux, на Ю. Франции, где впервые обнаружены их залежи * a. bauxite; н. Bauxite; ф. bauxites; и. bauxitas) Алюминиевая руда, состоящая в осн. из гидроокислов алюминия, окислов и гидроокислов железа и… … Геологическая энциклопедия

    Горная порода, состоящая из нескольких минералов гидроксидов алюминия; главная алюминиевая руда. Обычно бокситы представляют собой землистую глиноподобную массу, которая может иметь полосчатую, пизолитовую (гороховидную) либо однородную текстуру … Энциклопедия Кольера

    - [франц. bauxite, по названию местности Ле Бо (Les Baux) на юге Франции, где впервые были обнаружены залежи Б.], горная порода, состоящая в основном из гидратов глинозёма, окислов железа с примесью других минеральных компонентов. Основной… … Большая советская энциклопедия

    Алюминиевые руды, состоящие в основном из гидроксидов алюминия (28 80%) и железа (гиббсита, бёмита и диаспора, гидрогётита и др.). Главным образом осадочные. Вредная примесь SiO2. Плотность 1,8 3,1 г/см3. Сырьё для получения алюминия, а также… … Энциклопедический словарь

    Алюминиевая руда, природное минеральное сырьё, используемое для промышленного производства алюминия. Содержит гидроксиды алюминия (85 %) с примесью оксидов и гидроксидов железа, глинистых минералов и кварца. Месторождения бокситов подразделяются… … Географическая энциклопедия

    Алюм. руды, состоящие в осн. из гидроксидов алюминия (28 80%) и железа (гиббсита, бёмита и диаспора, гидрогётита и др.). Гл. обр. осадочные. Вредная примесь SiO 2. Плотн. 1,8 3,1 г/см3. Сырьё для получения алюминия, а также красок, абразивов,… … Естествознание. Энциклопедический словарь

    Бокситы алюминиевая руда, см. боксит. Этим же словом называют несколько посёлков в СССР: Бокситогорск железнодорожная станция около города Североуральск … Википедия

    Природные ресурсы - (Natural Resources) История использования природных ресурсов, мировые природные ресурсы Классификация природных ресурсов, природные ресурсы России, проблема исчерпаемости природных ресурсов, рациональное использование природных ресурсов… … Энциклопедия инвестора

    - (Jamaica) гос во в составе брит. Cодружества. Pасположено в Bест Индии на o. Ямайка и прилегающих к нему мелких o вах в Kарибском м. Пл. 11,425 тыс. км2. Hac. 2,37 млн. чел. (1986). Cтолица Kингстон. B адм. отношении разделена на 3… … Геологическая энциклопедия


Что такое боксит?

Боксит – это природный камень, родиной которого является Франция. Именно на юге этой страны впервые обнаружили данную алюминиевую руду. Название «боксит» произошло так же от французского слова «bauxite».

Название связано с местностью под названием Лебо, где и был обнаружен этот камень. В этой статье мы будем рассматривать как физические, так и химические свойства боксита , но для начала разберёмся в составе и определим какие составляющие входят в него.

Описание и свойства боксита

Итак, что же представляет из себя эта порода? Бокситом принято называть руду из алюминия. В его состав входит гидроксид алюминия, а также оксиды таких химических веществ как и железо.

Помимо этих составляющих частей, бокситы содержат в себе глинозем. Процентное содержание его может составлять от сорока до шестидесяти процентов и даже выше. Боксит считается поистине уникальным и удивительным природным камнем.

Обратимся к истории. Впервые об удивительных свойствах боксита было сказано в тысяча восемьсот пятьдесят пятом году на выставке в столице Франции Париже. Там находился интересный камень. На вид он был красивого серебристого цвета.

Вес его был весьма невелик, однако он был достаточно прочным с химической точки зрения. Этот металл на выставке был подписан как «глиняное ». В этом описании рассказывается о свойствах и виде алюминия. Но сырье из-за которого получают этот интересный металл носит название боксит.

Стоит отметить что алюминий получают только из тех бокситов, в которых процентное содержания алюминиевого глинозема составляет как минимум сорок процентов. Очень большую ценность имеют бокситы, из которых достать глинозем не составляет большого труда.

По своему внешнему виду боксит очень сильно похож на глину, однако по характеристикам он не имеет с ней ничего общего. Боксит в отличии от совершенно нерастворим в воде.

Первое местонахождение залежей боксита на территории нашей страны, которые были найдены на Урале, получило название «Красная Шапочка». Боксит является важнейшим камнем, из которого получают алюминий.

Месторождения и добыча боксита

Боксит — это весьма сложная по своему составу горная порода. Основную их часть составляют гидраты глинозема. Но помимо него, бокситы содержат в себе и прочие компоненты. Самой вредной составляющей является оксид кремния.

Что касается других веществ, то в боксите вполне можно встретить такие составляющие как окись магния, марганца и кальция, двуокись титана и прочие. Разберем подробнее физические свойства боксита .

На внешний вид боксит может быть красного цвета или других его оттенков. Встречается боксит как розового, так и темно-красного цвета. Так же камень может иметь серый оттенок от более светлого до угольно-черного. Если оценивать твердость боксита , то это значение равно 6 по .

Плотность камня может колебаться в значении от 2900 до 3500 килограмм на один кубический метр. По степени прозрачности боксит непрозрачен. Камни могут быть образованы разными минералами. Исходя из этого породу можно разделить на три основные группы.

К первой группе относятся бокситы , для которых породообразующим минералом является диаспор или же бемит. Такие бокситы носят название моногидратные. В них глинозем представлен только лишь в одной форме.

К следующей группе можно отнести те бокситы, основой для которых являются так называемые гиббситы. В таких камнях глинозем содержатся в трехводной форме. И к последней, третьей, группе относятся те бокситы, которые сочетают в себе формы первых групп.

Месторождение бокситов зависит от степени выветривания в той или иной зоне кислых, щелочных, а иногда и основных пород. Так же залежи боксита могут образовываться в той местности, где проходят осаждения глинозема в озерных и морских бассейнах.

Таким образом можно выделить две основные причины расположения бокситов. Первая причина носит название платформенной. Она связана с континентальными отложениями, которые залегают горизонтально. Вторая причина связана с местностью, где находятся отложения прибрежно-морского типа.

Практически весь запас бокситов на земном шаре – это 90% — сосредоточен в основном в тех странах, где климат тропический или же субтропический.

Это связано с тем, что камень формируются в основном тем, где происходит активное выветривание алюминиевых пород и этот процесс продолжается значительно длительный период. Причина выветривания заключается в климате.

Первое место в мире по запасам бокситов занимает Гвинея. На ее территории содержится около двадцати миллиардов тонн боксита. На втором месте по количеству этого камня находится Австралия. Здесь насчитывается приблизительно семь миллиардов тонн бокситов .

Что же касается России, то запасы данного камня нашей страны настолько малы, что нет такого количества руды, которой бы хватило для потребления внутри государства. Доля мировых запасов данного вида сырья составляет всего лишь один процент от общемирового запаса камня.

Самыми качественными залежами боксита в нашей стране считаются бокситы, расположенные в Северо-Уральском бокситом районе. Новый участок этого сырья – это Средне-Тиманская группа, которая располагается в северо-западном районе Республики Коми. Здесь проводится добыча бокситов и этот участок считается наиболее перспективным, чем тот, о котором было сказано вначале.

Россия находится лишь на седьмом месте в мире по добыче алюминиевых руд. Из-за того, что страна сама не может обеспечить себя металлом в нужном количестве, то ей приходится закупать боксит из заграничных стран.

На территории Российской Федерации находится пятьдесят месторождений этой руды. В эту цифру включены как территории, на которых добыча бокситов ведется активно, так и те, где залежи еще не до конца разработаны.

Наибольшая часть запасов боксита располагается в европейской части России. Сюда можно отнести ранее упомянутую Республику Коми, а также Архангельскую, Свердловскую и Белгородскую области. Во всех перечисленных областях содержится около семидесяти процентов всех запасов боксита территории нашей страны.

К старым месторождением бокситам в России можно назвать Радынское, которое располагается на территории Ленинградской области. Добыча бокситов проводится там и на сегодняшний день.

Места нахождения залежей боксита можно условно разделить на четыре группы. Первая группа носит название уникального месторождения. На таких территориях количество руды превышает пятьсот миллионов тонн. Вторая группа – это крупные и средние месторождения. Здесь залежи боксита составляют от пятидесяти до пятисот тонн.

Последняя группа – это мелкие месторождения. На таких территориях наличие боксита в цифрах составляет менее пятидесяти миллионов тонн.

Применение боксита

Главное использование боксита заключается в возможности добывать из него алюминий. Но также этот камень применяется и в других сферах. В отрасли черной металлургии глинозем еще принято использовать как .

Помимо этого, бокситы могут использоваться в производстве красок. Благодаря плавлению этого камня так же можно изготовить глиноземный цемент. А если расплавить боксит в электропечи, то конечным продуктом может стать электрокорунд.

Цена боксита

Цена на боксит зависит прежде всего от качества камня. Так же полная стоимость будет складываться от того, какой объем материала будет заказан. К примеру, если закупать боксит оптом , то цена не него значительно снизится.


По минералогическому составу бокситы разделяют на: 1) моногидратные – бёмитовые и диаспоровые, 2) тригидратные – гиббситовые и 3) смешанные. В этих типах руд могут присутствовать как моногидраты, так и тригидраты глинозема. В некоторых месторождениях наряду с тригидратом присутствует безводный глинозем (корунд).

Бокситы месторождений Восточной Сибири по возрасту, генезису, внешнему виду и минералогическому составу относятся к двум совершенно различным типам. Первый представляет собой своеобразные аргиллитоподобные метаморфизованные породы с неясно выраженной бобовой микроструктурой, а второй – имеет типичную бобовую структуру.

Основными компонентами бокситов являются окислы алюминия, железа, титана и кремния; окислы магния, кальция, фосфора, хрома и серы содержатся в количествах от десятых долей процента до 2%. Содержание окислов галлия, ванадия и циркония составляет тысячные доли процента.

Кроме Al 2 O 3 для бёмит-диаспоровых бокситов Восточной Сибири характерно высокое содержание SiO 2 и Fe 2 O 3 , а иногда и двуокиси титана (гиббситовый тип).

Технические требования на боксит регулируются ГОСТом, которым нормируется содержание глинозема и его отношение к кремнезему (кремневый модуль). Кроме того, ГОСТом предусматривается содержание в бокситах вредных примесей, таких как сера, окись кальция, фосфор. Эти требования в зависимости от способа переработки, типа месторождения и его технико-экономических условий для каждого месторождения могут изменяться.

В диаспор-бёмитовых бокситах Восточной Сибири характерная бобовая структура наблюдается в основном лишь под микроскопом, причем цементирующий материал преобладает над бобовинами. Среди бокситов этого типа выделяются две основные разновидности: диаспор-хлоритовая и диаспор-бёмит-гематитовая.

В месторождениях гиббситового типа преобладают бокситы с типичной бобовой структурой, среди которых выделяются: плотные, каменистые и выветрелые, разрушенные, именуемые рыхлыми. Кроме каменистых и рыхлых бокситов, значительную часть составляют глинистые бокситы и глины. Бобовая часть каменистых и рыхлых бокситов сложена в основном гематитом и магнетитом. Размеры бобовин от долей миллиметра до сантиметра. Цементирующая часть каменистых бокситов, а также разности бокситов сложены тонкозернистыми и тонкодисперсными глинистыми минералами и гиббситом, обычно окрашенными гидроокислами железа в красновато-бурые цвета.

Основными породообразующими минералами бокситов диаспор-бёмитового типа являются хлорит-дафнит, гематит, диаспор, бёмит, пирофиллит, иллит, каолинит; примеси – серицит, пирит, кальцит, гипс, магнетит, циркон и турмалин. Наличие хлорита, а также высококремнеземистых алюмосиликатов – иллита и пирофиллита обусловливает высокое содержание в бокситах кремнезема. Размеры зерен минералов от долей микрона до 0,01 мм. Минералы в бокситах находятся в тесной ассоциации, образуя тонкодисперсные смеси, и только в отдельных участках и тонких прослоях некоторые минералы образуют обособления (хлорит) или бобовины. Кроме того, часто наблюдаются различные замещения и изменения минералов, обусловленные процессами выветривания и метаморфизма.

Породообразующими минералами бокситов гиббситового типа являются тригидрат алюминия – гиббсит, гематит (гидрогематит), гётит (гидрогётит), маггемит, каолинит, галлуазит, гидрослюды, кварц, рутил, ильменит и безводный глинозем (корунд). Примеси представлены магнетитом, турмалином, апатитом, цирконом и др.

Основной минерал глинозема – гиббсит – наблюдается в виде тонкодисперсной, слабораскристаллизованной массы и реже сравнительно крупных (0,1–0,3 мм) кристаллов и зерен. Тонкодисперсный гиббсит обычно окрашен гидроокислами железа в желтоватые и бурые цвета и под микроскопом почти не поляризует. Крупные зерна гиббсита характерны для каменистых бокситов, где они образуют крустификационные каемки вокруг бобовин. Гиббсит тесно ассоциирует с глинистыми минералами.

Минералы титана представлены ильменитом и рутилом. Ильменит присутствует как в цементирующей части бокситов, так и в бобовой в виде зерен размером от 0,003–0,01 до 0,1–0,3мм. Рутил в бокситах тонкодисперсный размером от долей до 3–8 мк и

2. Изучение вещественного состава

При изучении вещественного состава бокситов, как следует из изложенного, мы имеем дело с аморфными, тонкодисперсными и тонкозернистыми минералами, находящимися в тесных парагенетических срастаниях и почти всегда окрашенных окислами и гидроокислами железа. Поэтому, чтобы произвести качественный и количественный минералогический анализ бокситов, необходимо использовать различные методы исследования.

От исходной пробы руды, измельченной до –0,5 или –1,0 мм, берут навески: одну –10 г для минералогического, вторую –10 г для химического и третью –5 г для термического анализов. Пробы диаспор-бёмитовых бокситов измельчают до 0,01–0,07 мм и гиббситовых – до 0,1–0,2 мм.

Минералогический анализ измельченной пробы производится после предварительного ее обесцвечивания, т. е. растворения окислов и гидроокислов железа в щавелевой и соляной

кислотах или спирте, насыщенном хлористым водородом. При наличии карбонатов пробы вначале обрабатываются уксусной кислотой. В полученных растворах определяются химическим путем содержания окислов железа, алюминия, кремния и титана.

Минералогический состав нерастворимого остатка можно исследовать разделением в тяжелых жидкостях после предварительной дезинтеграции и отмучивания и разделением в тяжелых жидкостях без предварительного отмучивания.

Для более полного изучения глинистых минералов применяется отмучивание (I вариант), при этом глинистые фракции могут исследоваться другими методами анализа (термическим, рентгеноструктурным) и без разделения в тяжелых жидкостях. Вариант II анализа наиболее быстрый, но менее точный.

Ниже описываются основные операции и методы анализов, применяемые при изучении вещественного состава бокситов.

Изучение под микроскопом производится в прозрачных и полированных шлифах и в иммерсионных препаратах. При лабораторном исследовании всему комплексу анализов должно предшествовать изучение бокситов в шлифах. По шлифам, приготовленным из различных образцов бокситов, выясняются минералогический состав, степень дисперсности минералов, взаимоотношение минералов друг с другом, степень выветрелости, структура и т, д. В полированных шлифах изучаются минералы окислов и гидроокислов железа, ильменит, рутил и другие рудные минералы. При этом надо учитывать, что минералы окислов и гидроокислов железа почти всегда находятся в тесной связи с глинистыми и минералами глинозема, поэтому, как показали наши исследования, их оптические свойства не всегда совпадают с данными эталонных образцов.

При исследовании минералогического состава бокситов, особенно их рыхлых разновидностей, широко используется иммерсионный метод. В иммерсионных препаратах минералогический состав изучается главным образом по оптическим свойствам минералов, а также определяется количественное соотношение минералов в пробе.

Изучение бокситовых пород под микроскопом в прозрачных и полированных шлифах и иммерсионных препаратах необходимо проводить при максимальных увеличениях. Даже при этом не всегда удается выяснить необходимые морфологические и оптические свойства минералов, характер их тонких срастаний. Эти задачи решаются только при одновременном применении электронно-микроскопического и электронографического методов исследования.

Отмучивание применяется для отделения сравнительно крупнозернистых фракций от тонкозернистых, требующих иных методов изучения. Для окрашенных бокситов (бурых, зеленоватых) этот анализ проводится только после обесцвечивания. Наиболее тонкозернистые бокситы, плотно сцементированные, отмучивают после предварительной дезинтеграции.

Дезинтеграция обесцвеченной пробы производится кипячением с пептизатором в колбочках Эрленмейера с обратным холодильником. В качестве пептизатора можно применять целый ряд реактивов (аммиак, жидкое стекло, сода, пирофосфат натрия и др.). Соотношения жидкого и твердого принимаются такими же, как и для глин. В отдельных случаях, как, например, в диаспор-бёмитовых бокситах, даже с помощью пептизатора дезинтеграция полностью не происходит. Поэтому не дезагрегированная часть дополнительно дотирается в ступке при легком нажиме резиновым пестиком.

Существуют различные методы отмучивания. Для глинистых пород они наиболее полно описаны М. Ф. Викуловой. Отмучивание бокситовых проб нами проводилось в литровых стаканах, как описано И. И. Горбуновым. На стенках делаются метки: верхняя – для 1 л, ниже от нее на 7 см – для слива частиц <1 мк и на 10 «г ниже литровой отметки – для слива частиц > 1 мк. Отмученная жидкость сливается с помощью сифона: верхний 7-сантиметровый слой через 24 ч (частицы менее 1 мк), 10-сантиметровый слой через 1 ч 22 мин (частицы 1–5 мк) и через 17 мин 10 сек (частицы 5–10 м.к). Фракции крупнее 10 мк рассеиваются на ситах. Для предотвращения засасывания суспензии с глубины ниже расчетного уровня на нижний конец сифона, опускаемого в суспензию, одевается наконечник конструкции В. А. Новикова.

Из фракции размером менее 1 мк или 5 мк в отдельных случаях с помощью суперцентрифуги (со скоростью вращения 18–20 тыс. об/мин) можно выделять фракции, обогащенные частицами размером в сотые доли микрона. Это достигается изменением скорости подачи суспензии в центрифугу. Принцип действия и применение суперцентрифуги для гранулометрического анализа описаны К. К. Никитиным.

Гравитационный анализ для бокситовых пород производится на электрических центрифугах при 2000–3000 об/мин в жидкостях удельного веса 3,2; 3,0; 2,8; 2,7; 2,5.

Разделение на мономинеральные фракции проб центрифугированием в тяжелых жидкостях без предварительного отмучивания почти не достигается. Тонкие классы (1–5 мк) даже после отмучивания плохо разделяются в тяжелых жидкостях. Происходит это, по-видимому, из-за высокой степени дисперсности, а также тончайших срастаний минералов. Таким образом, перед гравитационным анализом необходимо отмучиванием разделить пробы на классы. Тонкие классы (1–5 мк и иногда 10 мк изучаются термическим, рентгеноструктурным, микроскопическим и другими методами без разделения в тяжелых жидкостях. Из более крупных фракций в тяжелых жидкостях можно отделить диаспор от бёмита (жидкость удельного веса 3,0), пирит, ильменит, рутил, турмалин, циркон, эпидот и др. (в жидкости удельного веса 3,2), бёмит до гиббсита и каолинита (жидкость удельного веса 2,8), гиббсит от каолинита (жидкость удельного веса 2,5).

Необходимо отметить, что для лучшего разделения в тяжелых жидкостях обесцвеченные пробы или фракции после отмучивания не высушивают досуха, а заливают тяжелой жидкостью во влажном состоянии, так как высушенная проба может терять способность к диспергированию. Применение гравитационного анализа при изучении минералогического состава бокситов детально описано Е. В. Рожковой и др.

Термический анализ является одним из основных методов исследования бокситовых проб. Как известно, бокситы, сложены минералами, содержащими воду. В зависимости от изменения температуры в пробе происходят различные фазовые превращения, сопровождающиеся выделением или поглощением тепла. На этом свойстве бокситов основано применение термического анализа. Сущность метода и приемы работы описаны в специальной литературе.

Термический анализ производится различными методами, чаще всего пользуются методом кривых нагреваний и методом обезвоживания. В последнее время сконструированы установки, на которых одновременно записываются кривые нагревания и обезвоживания (потеря в весе). Термические кривые снимаются как для исходных проб, так и для отдельно выделенных из них фракций. Для примера приводятся термические кривые зеленовато-серой хлоритовой разновидности диаспорового боксита и отдельных его фракций. Здесь на термической кривой диаспоровой фракции II хорошо выражен

эндотермический эффект при температуре 560°, которому соответствуют эндотермические эффекты на кривых I и III при температурах 573 и 556°. На кривой нагревания глинистой фракции IV эндотермические остановки при 140, 652 и 1020° соответствуют иллиту. Эндотермическая остановка при 532° и слабые экзотермические эффекты при 816 и 1226° можно объяснить наличием небольшого количества каолинита. Таким образом, эндотермический эффект при 573° на исходной пробе (кривая I ) соответствует как диаспору, так и каолиниту, а при 630° – иллиту (652° на кривой IV) и хлориту. При полиминеральном составе пробы происходит наложение термических эффектов, в результате нельзя получить ясного представления о составе исходной породы без анализа составляющих частей или фракций.

В гиббситовых бокситах минералогический состав по термическим кривым определяется значительно проще. На всех термограммах отмечается эндотермический эффект в интервале от 204 до 588 ° с максимумом при 288–304°, указывающий на наличие гиббсита. В этом же интервале температур теряют воду гидроокислы железа-гётит и гидрогётит, но так как количество воды в них примерно в 2 раза меньше, чем в гиббсите, то на глубину эффекта, соответствующую гидроокислам железа, будет оказывать влияние количество гиббсита. Второй эндотермический эффект в интервале 500–752° с максимумом при 560–592° и соответствующий ему экзотермический эффект при 980–1020° характеризуют каолинит.

Присутствующие в небольших количествах в исследуемых бокситах галлуазит и мусковит на термограммах не отражаются, если не считать небольшой эндотермический эффект при 116–180°, принадлежащий, по-видимому, галлуазиту. Причиной этого являются небольшие содержания указанных минералов и наложение ряда эффектов. Кроме того, если в пробах присутствуют каолинит и слюды, то, как известно даже незначительная примесь каолинита в слюде на термограммах выражается каолинитовым эффектом.

Определение количества гиббсита можно производить по площадям первого эндотермического эффекта. Измерение площадей производится планиметром. За эталон можно принять наиболее обогащенную гиббситом пробу с максимальным содержанием глинозема и воды, наименьшим – кремнезема и окислов железа. Величина А1 2 О 3 гиббсита в других пробах определяется из расчета

где X - величина определяемого гиббситового А1 2 O 3 ;

S -площадь эндотермического гиббситового эффекта исследуемой пробы на термограмме, см 2 ,

А - содержание А1 2 O 3 эталонной пробы гиббcита;

К - площадь эталонной пробы на термограмме, см 2 .

Зависимость величин площадей эндотермического эффекта от содержания гиббсита можно выразить графически. Для этого по оси абсцисс откладываются содержания А1 2 O 3 в процентах, а по оси ординат – соответствующие площади в квадратных сантиметрах. Измерив площадь эндотермического эффекта, соответствующую гиббситу на кривой, можно подсчитать по графику содержание А1 2 O 3 в исследуемой пробе.

Метод обезвоживания основан на том, что минералам, содержащим воду, при определенных температурах свойственны потери в весе. По потерям в весе определяют количество минерала в пробе. В некоторых случаях, особенно когда температурные интервалы дегидратации минералов перекрываются, данный метод малонадежен. Поэтому его следует применять одновременно с регистрацией кривых нагревания, хотя такой комбинированный метод не всегда доступен из-за отсутствия специальных установок.

Наиболее простой метод определения потерь в весе разработан в ВИМСе. Для этого нужно иметь сушильный шкаф, муфель, термопару, торзионные весы и др. Метод работы, ход анализа и результаты его применения для глин и бокситов подробно описаны В. П. Астафьевым.

Пересчет потерь в весе при нагревании в каждом температурном интервале можно проводить не на количество минерала, как рекомендует В. П. Астафьев, а на количество А1 2 О 3 . содержащегося в этом минерале. Полученные результаты можно сопоставлять с данными химического анализа. Рекомендуемая 2-часовая выдержка при 300° для проб, обогащенных гиббситом, оказывается недостаточной. Проба достигает постоянного веса в течение 3–4 часового нагревания, т. е. когда выделится вся гиббситовая вода. В глинистых же разностях, бедных гиббситом, обезвоживание его при 300° происходит полностью за 2 ч. Потери в весе проб при различных температурах можно выразить графически, если по оси абсцисс отложить значения температур (от 100 до 800°), а по оси ординат – соответствующие им потери в весе (Н 2 О) в процентах. Результаты количественного определения минералов по методу В. П. Астафьева, обычно хорошо совпадают с результатами термического анализа по площадям эффектов и с пересчетом на минеральный состав химического анализа проб.

Химический анализ дает первое представление о качестве бокситов при исследовании их вещественного состава.

Весовое отношение глинозема к кремнезему определяет величину кремневого модуля, который является критерием качества бокситов. Чем больше этот модуль, тем лучше качество бокситов. Величина модуля для бокситов колеблется от 1,5 до 12,0. Соотношение содержания глинозема и потери в весе при прокаливании (п. п. п.) дает некоторое представление о типе боксита. Так, в гиббситовых бокситах потеря при прокаливании значительно выше, чем в диаспор-бёмитовых. В первых она колеблется в пределах от 15 до 25%, а во вторых – от 7 до 15%. Потеря при прокаливании в бокситах обычно принимается за количество Н 2 O, так как SO 3 , CO 2 и органическое вещество лишь в редких случаях встречаются в больших количествах. В диаспор-бёмитовых бокситах в виде примеси присутствуют кальцит и пирит. Сумма SO 3 и СO 2 в них составляет 1–2%. В бокситах гиббситового типа иногда присутствует органическое вещество, но количество его не превышает 1%. Для этого типа бокситов характерны высокие содержания окиси железа (10–46%) и двуокиси титана (2–9%). Железо представлено в основном в виде окиси и входит в состав гематита, гётита, магнетита и их гидратных форм. В диаспор-бёмитовых бокситах присутствует закисное железо, содержание которого колеблется от 1 до 17%. Высокое содержание его обусловлено наличием хлорита и в небольших количествах пирита. В бокситах гиббситового типа закисное железо входит в состав ильменита.

Наличие щелочей может указывать на присутствие в бокситовой породе слюд. Так, в диаспор-бёмитовых бокситах сравнительно высокое содержание щелочей (K 2 O+Na 2 O = 0,5–2,0%) объясняется наличием гидрослюд типа иллита. Окислы кальция и магния могут входить в состав карбонатов, глинистых минералов и хлорита. Содержание их обычно не превышает 1–1,5%. Хром и фосфор также составляют незначительную примесь в бокситах. Другие элементы-примеси Cr, Mn, Cu, Pb, Ni, Zn, As, Co, Ba, Ga, Zr, V в бокситах присутствуют в ничтожных количествах (тысячные и десятитысячные доли процента).

При исследовании вещественного состава бокситов также производится химический анализ отдельных мономинеральных фракций. Например, в бёмит-диаспоровых и гиббситовых фракциях определяют содержание глинозема, потери при прокаливании и примеси – кремнезем, окислы железа, магния, ванадия, галлия и двуокиси титана. Фракции, обогащенные глинистыми минералами, анализируются на содержание кремнезема, суммы щелочей, глинозема, окислов кальция, магния, железа и потерь при прокаливании. Высокие содержания кремнезема при наличии щелочей в глинистых фракциях из диаспор-бёмитовых бокситов указывают на присутствие гидрослюд типа иллита. В глинистых фракциях каолинит-гиббситовых бокситов, если отсутствуют щелочи и минералы свободного кремнезема, высокое содержание SiO 2 может указывать на высокую кремнеземистость каолинита.

По данным химического анализа, можно производить пересчет на минеральный состав. Химический анализ мономинеральных фракций пересчитывается на молекулярные количества, по которым вычисляются химические формулы исследуемых минералов. Пересчет химического состава бокситов на минералы производится для контроля других методов или как дополнение к ним. Например, если в пробе основными кремнеземсодержащими минералами являются кварц и каолинит, то, зная количество кварца, определяют оставшуюся часть кремнезема, связанного в каолините. Исходя из количества кремнезема, приходящегося на каолинит, можно подсчитать количество глинозема, необходимого для увязки его в формулу каолинита. По общему содержанию каолинита можно определить количество А1 2 O 3 , находящегося в виде гидратов глинозема (гиббсита или других). Например, химический состав боксита: 51,6% А1 2 O 3 ; 5,5% SiO 2 ; 13,2% Fe 2 O 3 ; 4,3% TiO 2 ; 24,7% п. п. п.; сумма 99,3%. Количество кварца в пробе 0,5%. Тогда количество SiO 2 в каолините будет равно разнице между общим содержанием его в пробе (5,5%) и SiO 2 кварца (0,5%), т. е. 5,0%.

а количество А1 2 О 3 , приходящегося на 5,0% SiО 2 каолинита, будет

Разница между общим содержанием А1 2 О 3 в породе (51,6) и А1 2 О 3 , приходящимся на каолинит (4,2), составляет Ai 2 О 3 гидратов глинозема, т. е. 47,4%. Зная, что в исследуемых бокситах минералом гидрата глинозема является гиббсит, по полученному для гидратов глинозема количеству А1 2 О 3 (47,4%) подсчитываем количество гиббсита, исходя из теоретического его состава (65,4% А1 2 О 3 ; 34,6% Н 2 О). В данном случае по количеству глинозема оно будет равно

Полученные данные можно контролировать по потере в весе при прокаливании, которая принимается здесь за количество Н 2 О. Так, для увязки А1 2 О 3 =47,4% в гиббсит необходимо

По химическому анализу общее содержание Н 2 0 в пробе 24,7 (п. п. п.), т. е. примерно совпадает с содержанием Н 2 0 в гиббсите. В таком случае на другие минералы (каолинит, гидроокислы железа) не остается воды. Следовательно, количество глинозема, равное 47,4%, кроме тригидрата включает в себя еще какое-то количество моногидрата или безводного глинозема. Приведенный пример показывает лишь принцип пересчета. В действительности же большинство бокситов более сложно по минералогическому составу. Поэтому при пересчете химического анализа на минералогический используются данные и других анализов. Например, в гиббситовых бокситах количество гиббсита и глинистых минералов следует подсчитывать по данным обезвоживания или термического анализа с учетом их химического состава.

Однако, несмотря на сложность минералогического состава, для некоторых бокситов возможен пересчет химического состава на минералогический.

Фазовый химический анализ. Основные принципы химического фазового анализа бокситов изложены в книге В. В. Доливо-Добровольского и Ю. В. Клименко. При изучении бокситов в Восточной Сибири выяснилось, что этот метод в каждом конкретном случае требует некоторых изменений и усовершенствований. Объясняется это тем, что породообразующие минералы бокситов, в особенности глинистые, имеют широкие пределы растворимости в минеральных кислотах.

Химический фазовый анализ для исследования бокситов проводится главным образом в двух вариантах: а) неполный химический фазовый анализ (избирательное растворение одного или группы минералов) и б) полный химический фазовый анализ.

Неполный химический фазовый анализ выполняется, с одной стороны, с целью предварительной обработки проб для последующего изучения нерастворимых остатков под микроскопом, термическим, рентгеноструктурным и другими анализами, с другой – для количественного определения одного или двух компонентов. Количество минералов определяется по разности весов до и после растворения или по пересчету химического состава растворенной части пробы.

С помощью избирательного растворения определяется количество окислов и гидроокислов железа (иногда хлорита). Вопрос обезжелезивания бокситов подробно освещен в работах ВИМСа . В бокситах диаспор-бёмитового типа окислы железа и хлориты растворяются в 6 н. НСl. В гиббситовых бокситах гидроокислы и окислы железа максимально (90–95%) извлекаются в раствор при растворении в спирте, насыщенном хлористым водородом (3 н.), при Ж: Т = 50. При этом в раствор переходит 5–10% глинозема от общего количества его в бокситах, а двуокиси титана до 40%. Обесцвечивание бокситов можно проводить в 10%-ной щавелевой кислоте при нагревании на водяной бане в течение 3–4 ч при Ж: Т= 100. В этих условиях меньше растворяются титансодержащие минералы (около 10-15% TiO 2), но больше извлекается в раствор глинозема (25–40%), при извлечении окислов железа на 80–90%. Таким образом, для максимального сохранения минералов титана при обесцвечивании бокситов нужно пользоваться 10%-ной щавелевой кислотой, а для сохранения минералов глинозема – раствором спирта, насыщенного хлористым водородом.

Карбонаты (кальцит), присутствующие в некоторых бокситах, растворяются в 10%-ной уксусной кислоте при нагревании в течение 1 ч при Ж: Т=100 (см. главу «Медистые песчаники»). Растворение их должно предшествовать обесцвечиванию бокситов.

Неполный химический фазовый анализ применяется также для количественного определения минералов глинозема. Существует несколько методов их определения, основанных на избирательном растворении. В некоторых бокситах количество гиббсита достаточно быстро можно определять растворением проб в 1 н. КОН или NaOH по методике, описанной В. В. Доливо-Добровольским и Ю. В. Клименко. Маловодные и безводные минералы глинозема – диаспор и корунд в бокситах можно определить с помощью растворения проб в плавиковой кислоте без подогрева, подобно методике определения силлиманита и андалузита, описанной нами ниже. А. А. Глаголев и П. В. Кулькин указывают, что корунд и диаспор из вторичных кварцитов Казахстана в плавиковой кислоте на холоде в течение 20 ч практически не растворяются.

Полный химический фазовый анализ, ввиду своеобразия вещественного состава бокситов и различного поведения при растворении одних и тех же минералов из разных месторождений, имеет свою специфику для каждого типа бокситов. После растворения каолинита в остатке определяют А1 2 О 3 и SiО 2 . По содержанию последнего подсчитывается количество пирофиллита, при этом надо иметь в виду, что и в самом диаспоре почти постоянно присутствует кремнезем (до 11%).

Для гиббситовых бокситов, в которых моногидратные минералы глинозема отсутствуют или составляют незначительную часть, химический фазовый анализ может быть сокращен до двух или трех стадий. По этой схеме двухкратной обработкой щелочью растворяют гиббсит. По содержанию в растворе А1 2 О 3 подсчитывается количество гиббсита в пробе. Но на примере гиббситовых бокситов Восточной Сибири выяснилось, что в отдельных пробах выщелачивается больше глинозема, чем содержится его в виде гиббсита. В этих бокситах в щелочные вытяжки, по-видимому, переходит свободный глинозем, образующийся в процессе физико-химического разложения каолинита. Учитывая особенности гиббситовых бокситов, при проведении химического фазового анализа необходимо параллельно вести анализ без обработки проб щелочью. Сначала проба растворяется в НСl удельного веса 1,19 при нагревании в течение 2 ч. В этих условиях гиббсит, окислы и гидроокислы железа полностью растворяются.

Спектральный, рентгеноструктурный и другие анализы являются очень эффективными при изучении бокситов. Как известно, спектральный анализ дает полное представление об элементарном составе руды. Производится он как для исходных проб, так и для отдельных выделенных из них фракций. Спектральным анализом в бокситах определяют содержания основных компонентов (Al, Fe, Ti, Si), а также элементов-примесей Ga, Cr, V, Mn, P, Zr и др.

Широко применяется рентгеноструктурный анализ, позволяющий определять фазовый состав различных фракций. С той же целью используются электронографические и электронно-микроскопические исследования. Сущность этих анализов, методы приготовления препаратов, способы интерпретации результатов описаны в специальной литературе. Здесь необходимо отметить, что при исследовании этими методами большое значение имеет способ приготовления пробы. Для рентгеноструктурного и электронографического методов анализа необходимо получение более или менее мономинеральных фракций, а также разделение частиц по размерам. Например, в диаспор-бёмитовых бокситах во фракции менее 1 мк рентгеноструктурным анализом обнаруживается только иллит, а электронографическим только каолинит. Обусловлено это тем, что иллит находится в виде крупных частиц, которые не поддаются исследованию электронографом (частицы крупнее 0,05 мк), а каолинит, наоборот, из-за высокой степени дисперсности обнаруживается только электронографически. Термическим анализом подтвердилось, что эта фракция представляет собой смесь иллита и каолинита.

Электронно-микроскопический метод не дает определенного ответа, так как в бокситах, особенно плотно сцементированных, естественная форма частиц после измельчения и растворения проб в кислотах не сохраняется. Поэтому просмотр под электронным микроскопом имеет вспомогательное или контролирующее значение для электронографического и рентгеноструктурного анализов. Он дает возможность судить о степени однородности и дисперсности той или иной фракции, о наличии примесей, которые могут быть отражены вышеназванными анализами.

Из других методов исследования следует отметить магнитную сепарацию. Постоянным магнитом выделяют маггемит-гематитовые бобовины.

Название камня Боксит произошло от французского "bauxite", по названию местности Ле-Бо (Les Baux) на юге Франции, где впервые были обнаружены залежи бокситов.

Бокситы - алюминиевая руда, состоящая из гидроксидов алюминия, оксидов железа и кремния, сырье для получения глинозема и глиноземосодержащих огнеупоров. Содержание глинозема в промышленных бокситах колеблется от 40% до 60% и выше. Используется также в качестве флюса в черной металлургии.

Школьная генетическая классификация - осадочная

Состав

Боксит состоит в основном из гидратов глинозема, окислов железа с примесью других минеральных компонентов.

Основной химический компонент боксита - глинозем (Al2O3) (28 - 80%). Постоянная составная часть - окись железа (FeзOз). Наиболее вредная примесь - кремнезем (SiO2).

Из других примесей встречаются: двуокись титана (TiO2), окись кальция (CaO), окись магния (MgO), окись марганца (MnO), пятиокись фосфора(P2O5) и др.

Cтраница 1


Месторождения бокситов, пригодные для разработки, в Аргентине пока не найдены, зато открыты богатейшие залежи глины и алунита, переработкой которых на глинозем следует заняться.  

Месторождения бокситов расположены на крайнем юге страны, в горах Мландже.  

Месторождения бокситов расположены в Ленинградской области (Тихвинское месторождение), на Урале, и Красноярском краях и других районах Советского Союза.  

Месторождения бокситов имеются также в Аппалачском районе, где полоса их тянется от Алабамы до Бошетоурт в южной Виргинии; крупные залежи имеются в северо-западной части штата Джорджии и в северо-восточной части штата Алабамы, также в центральной части штата Джорджии. В Южной Америке мощные месторождения высокосортных гидрар-гиллитовых бокситов сосредоточены в Британской Гвиане, между реками Эсквпбо и границами Суринама, особенно вдоль реки Демерара. Многочисленные месторождения бокситов латеритного типа заключает в себе Африка: они имеются как на океанском по-бережьи (Гвинейский залив, о. Мадагаскар), так и внутри материка, напр, в Ньяссе.  

Месторождения бокситов Ганы простираются в восточном направлении на Того. Богатый алюминием латерит около горы Агон, который образовался над интрузиями, известен уже давно. Кроме этого месторождения, расположенного на юге страны, на крайнем севере обнаружены латериты, лежащие на голубых сланцах. Разработка месторождения пока не запланирована.  


Разведанное крупное Висловское месторождение бокситов на КМА в Белгородской области залегает пространственно близко с богатыми железными рудами на глубинах около 500 м в весьма сложных горно-гидрогеологических условиях. Освоение этого месторождения, как показывают данные ТЭО, экономически целесообразно лишь при одновременной отработке одним рудником бокситов и богатых железных руд.  

Месторождений боксита в Корее еще не найдено, но там находится, однако, обширное месторождение алунита (см. стр. Алунит предполагают добывать для переработки на глиноземных заводах.  

Месторождений бокситов, являющихся сырьем для производства алюминия, у нас в Союзе очень много; встречающиеся бокситы окрашены в различные цвета - от белого до темно-красного. Термическая активация бокситов (различных месторождений) в интервале температур 500 - 700 С до влажности 2 7 - 5 % придает им высокие адсорбционные свойства. Установлено, что при расширении температурного интервала термической активации адсорбционная способность бокситов понижается. Измельчение бокситов способствует снижению температуры их активации примерно на 100 - 150 С. В табл. 2 приведен химический состав бокситов некоторых месторождений.  

Ряд месторождений бокситов диаспор-бемитового типа открыт на Южном Урале в Челябинской области и Башкирской АССР. Южно-уральские бокситы характеризуются повышенным содержанием кремнезема и высокой твердостью. Добыча их ведется также подземным способом.  

Понравилась статья? Поделитесь ей