Контакты

Как влияют вспышки на солнце на здоровье. Из-за мощной вспышки солнце на земле ухудшилась связь

В последнее время в различных источниках появляется все больше информации о «конце света» и о возможных катаклизмах, связанных с природными явлениями, а также о техногенных катастрофах. Огромное количество противоречивых данных вводит в ступор неподготовленных людей и приводит к тому, что они стараются вообще не думать на эту тему и пропускают все мимо ушей. Однако если верить народной мудрости, наличие дыма означает, что где-то горит огонь, и не обращать на это внимание было бы с нашей стороны обычным невежеством. Рассмотрим одно из множества явлений, которое по некоторым предположениям и прогнозам может стать причиной масштабной катастрофы.

Вспышки на попали в поле зрения людей еще в 1859 году, тогда они стали причиной неисправностей с телеграфными линиями. Кроме того, это событие привело к тому, что северное сияние можно было увидеть на Гавайях. Как известно, наше светило существует по определенным циклам – в течении одиннадцати лет солнечная активность имеет минимальную величину, а после этого она значительно возрастает. Максимальные вспышки наблюдаются как раз на пике активности. В это время Солнце выделяет магнитную и радиационную энергии, а также ультрафиолет в очень больших количествах. Они доходят до Земли буквально за несколько часов. Солнечное излучение должно останавливаться магнитным полем нашей планеты, которое предотвращает нанесение ей значительного ущерба, однако вследствие его истощения должная безопасность не может быть гарантирована.

Так к каким же конкретным последствиям могут привести и возможно ли от них защититься? Данное явление способно вызвать очень большие геомагнитные бури и полный отказ электрической сети. Это может привести не только к невозможности использования электрических приборов, но и к катастрофе глобального характера. Если что-то подобное случится, все начнется с того, что люди смогут увидеть очень яркое сияние большой интенсивности. После этого перестанут работать все трансформаторы и энергетические системы. По прогнозам специалистов, в США все ключевые трансформаторы сгорят всего за 90 секунд, и без электричества останутся больше, чем 130 млн. человек.

Вначале катастрофы никто не погибнет, но достаточно быстро начнут разрушаться структуры и системы, от которых напрямую зависит жизнь огромного количества людей. Перестанут работать нефтепроводы и газопроводы, в населенные пункты не будет поступать вода, бензоколонки выйдут из строя. Автономные энергетические системы, которые есть в некоторых учреждениях, рассчитаны на функционирование в течении трех дней. По подсчетам экспертов за год могут умереть несколько миллионов человек, и их смерть будет связана с косвенными причинами остановки экономики.

Но стоит ли делать такие мрачные и безнадежные прогнозы в связи с событием, которого может и не произойти? Как говорят специалисты, подобная электромагнитная буря вполне возможна, и ее проявление всего лишь вопрос времени. По словам профессора Дениэля Бейкера масштабные вспышки на Солнце могут привести к результатам, которые сравнимы с падением огромного астероида или с ядерной войной. Даже если произойдет событие, подобное тому, которое наблюдалось в 1859 году, современные люди его могут и не пережить. Это связано с сегодняшним уровнем развития промышленности и с важностью трансформаторов, на замену которых требуется очень много времени. Как видим, несмотря на все достижения современного человечества, в каком-то смысле оно сейчас является более уязвимым, чем 150 лет назад. Развитие различных сфер человеческой деятельности ставит людей в прямую зависимость от новых изобретений и от техники, которая постоянно усовершенствуется. Это наводит на мысль, что у каждого достижения есть обратная сторона, и когда-нибудь она может проявиться во всей своей красе.

Как мы знаем, сейчас активно обсуждается не только чрезмерная солнечная активность, но и возможность падения астероида, таяние полярных льдов, опасности большого андронного колайдера, эпидемии, наводнения и многое другое. Некоторые даже говорят о восстании машин и о нашествии представителей внеземных цивилизаций. С другой стороны в литературе и в прессе появляются сообщения о том, что пришло время трансформации человечества, и что для выживания люди должны измениться духовно и нравственно. Чаще всего, такое преобразования связывается с возможностями религий и эзотерических течений. Несмотря на то, что многие прогнозы не очень оптимистичны, люди начинают задумываться о своем месте в мире и о том, что им нужно делать, для того чтобы выжить. Может быть, изменение достаточного большого количества людей сможет предотвратить катастрофу или сделать ее менее разрушительной. Каждому из нас остается только работать над собой и надеяться на лучшее.

Уже не одно десятилетие ученые разных стран пытаются выяснить, каким образом можно прогнозировать такие природные явления как вспышки на Солнце. Их частоту обусловливают одиннадцатилетние циклы солнечной активности. Однако самые мощные и неприятные проявления активности Солнца настигают нас, совершенно внезапно, и по сей день. Это обусловлено тем, что прогнозировать солнечные вспышки можно только при анализе магнитных солнечных полей, не отличающихся постоянством и хотя бы минимальной стабильностью.

Влияние солнечных вспышек на космическое пространство

Наиболее неблагоприятными солнечные вспышки считаются для покорителей космоса. Представляя наибольшую степень угрозы в просторах космического пространства, волны мощной взрывной энергии вполне могут повреждать спутники связи, и даже космические аппараты, полностью выводя приборы и системы управления из строя. Вспышки на , образующие мощные потоки протонов, значительно повышают уровень радиации, вследствие чего люди в открытом космосе могут запросто подвергаться сильному облучению. Определенный риск облучения существует даже для пассажиров авиалайнеров, которые совершают перелеты в определенные периоды, приходящиеся на пики активности вспышек.

При Советском Союзе возможность вероятности солнечных вспышек пытались прогнозировать ведущие специалисты в Крымской астрофизической обсерватории, и если возникали предпосылки для энергетического взрыва, полеты космонавтов в обязательном порядке откладывались. Мировой сенсацией стал в 1968 году прогноз советских ученых о предстоящей солнечной вспышке, которой был присвоен самый высокий уровень опасности – в три балла. Тогда космический корабль «Союз-3» с Георгием Береговым был посажен, а уже через три часа наблюдали мощнейшую вспышку на Солнце, которая для человека, находящегося в космосе, стала бы смертельной.

Опасность облака плазмы и классификация солнечных вспышек

Солнечные вспышки могут представлять немалую опасность и для жителей нашей планеты, даже при том, что Земля защищена от них геомагнитным полем и атмосферным озоновым слоем. Каждая такая вспышка сопровождается облаком своеобразной плазмы и, достигая Земли, именно эта плазма вызывает магнитные бури, негативно влияющие практически на все живые организмы и выводящие из строя самые мощные системы связи.

После начала солнечной вспышки излучение доходит до поверхности Земли в течение 8-10-минутного периода, после чего в сторону нашей планеты направляются мощно заряженные частицы. Далее в течение трехдневного срока облака плазмы достигают Земли. Своеобразная взрывная волна сталкивается с нашей планетой и вызывает магнитные бури. Длительность каждой вспышки обычно не превышает нескольких минут, однако этого времени и мощности выброса энергии вполне хватает для того чтобы оказать влияние на состояние Земли и самочувствие ее жителей.

Учеными вспышки на Солнце были классифицированы пятью видами : A, B, C, M, X. При этом А – вспышки с минимальной степенью рентгеновского излучения, а каждая последующая – интенсивнее предыдущей в 10 раз. Самыми мощными и опасными считаются вспышки класса X. Многочисленными учеными и исследователями замечено, что даже тайфуны, ураганы и землетрясения чаще всего возникают во время проявления солнечной активности. Поэтому прогнозы различных природных катаклизмов нередко связаны со вспышками на Солнце.

Основные виды опасности при солнечных вспышках

Ничуть не преувеличивая уровень влияния вспышек от Солнца на человеческий организм и самочувствие, можно определить группы людей, которые наиболее подвержены негативному воздействию взрывов энергии солнечной системы.

Уже не раз доказано, что катастрофы и аварии по вине человеческого фактора количественно вырастают в дни солнечных вспышек. Это связано с тем, что в такие периоды мозговая деятельность максимально ослаблена, а концентрация внимания сильно притупляется. Кроме того, для ряда людей магнитные бури являются возбудителями настоящих мучений и расстройств. Таких групп можно насчитать множество:

  • Люди с ослабленным иммунитетом;
  • Население, страдающее сердечно-сосудистыми заболеваниями, мигренями, скачками (перепадами) артериального давления;
  • Люди с хроническими заболеваниями, которые обостряются во время каждой вспышки солнечной энергии и последующей магнитной бури;
  • Население, подверженное периодическим проявлениям бессонницы, потере аппетита, беспокойному сну;
  • Психически неуравновешенные личности.

Существуют отдельные мнения, неоднократно подтверждаемые практически, что многих во время магнитных бурь начинают беспокоить старые раны, шрамы, поврежденные кости или больные суставы. Также в отдельную группу можно отнести тех представителей, у которых наблюдается так называемая замедленная реакция на магнитные бури. Это люди, испытывающие негативные последствия через несколько дней после солнечных вспышек.

Многие специалисты советуют периодически проходить медицинские обследования для выявления хронических заболеваний. Так как именно такого рода болезни значительно обостряются во время вспышек на Солнце, можно будет если не предотвратить предстоящее недомогание и ухудшение здоровья, то хотя бы иметь под рукой лекарства.

Как ученые пытаются предсказывать вспышки на Солнце

Учитывая степень влияния и опасность от солнечных вспышек, работы и попытки найти наиболее верные методы прогнозирования данного явления не прекращаются. Достаточно долго ученые и синоптики рассматривали два пути решения проблемы:

  1. Казуальный – основывается на прогнозировании ближайшей вспышки методом ее моделирования, для чего тщательно изучаются физические механизмы вспышки.
  2. Синоптический – метод, при котором подразумевается изучение и анализ предпосылок и поведения Солнца перед каждой возникшей вспышкой.

Неоспоримым остается тот факт, что корональное происхождение солнечных вспышек и их магнитная природа непосредственно связаны. А значит, и для более качественной разработки прогнозирования скорей всего необходимо будет связывать воедино оба метода.

В первой половине среды, 6 сентября 2017 года, ученые зарегистрировали самую мощную за последние 12 лет солнечную вспышку. Вспышке присвоен балл X9.3 - буква означает принадлежность к классу экстремально больших вспышек, а число - силу вспышки. Выброс миллиардов тонн материи произошел почти в районе AR 2673, практически в центре солнечного диска, поэтому земляне не избежали последствий случившегося. Вторая мощная вспышка (балла X1.3) зафиксирована вечером в четверг, 7 сентября, третья - сегодня, в пятницу, 8 сентября.

Солнце выбрасывает огромную энергию в космос

Солнечные вспышки в зависимости от мощности рентгеновского излучения делятся на пять классов: A, B, C, M и X. Минимальный класс A0.0 соответствует мощности излучения на орбите Земли в десять нановатт на квадратный метр, следующая буква означает увеличение мощности в десять раз. В ходе самых мощных вспышек, на которые способно Солнце, в окружающее пространство уходит огромная энергия, за несколько минут - около сотни миллиардов мегатонн в тротиловом эквиваленте. Это примерно пятая часть энергии, излучаемой Солнцем за одну секунду, и вся энергия, которую выработает человечество за миллион лет (при условии ее производства современными темпами).

Ожидается мощная геомагнитная буря

Рентгеновское излучение доходит до планеты за восемь минут, тяжелые частицы - за несколько часов, облака плазмы - за двое-трое суток. Корональный выброс от первой вспышки уже достиг Земли, планета столкнулась с облаком солнечной плазмы диаметром около ста миллионов километров, хотя ранее прогнозировалось, что это произойдет к вечеру пятницы, 8 сентября. Геомагнитная буря уровня G3-G4 (пятибалльная шкала варьируется от слабых G1 до экстремально сильных G5), спровоцированная первой вспышкой, должна завершиться вечером в пятницу. Корональные выбросы от второй и третьей солнечных вспышек еще не достигли Земли, возможные последствия стоит ожидать в конце текущей - начале следующей недели.

Последствия вспышки давно понятны

Геофизики прогнозируют полярное сияние в Москве, Санкт-Петербурге и Екатеринбурге, городах, расположенных на сравнительно низких для авроры широтах. В американском штате Арканзас его уже заметили. Еще в четверг операторы в США и Европе сообщали о некритичных перебоях со связью. Уровень рентгеновского излучения на околоземной орбите незначительно повысился, военные уточняют, что спутникам и наземным системам, а также экипажу МКС прямой угрозы нет.

Изображение: NASA / GSFC

Все же существует опасность для низкоорбитальных и геостационарных спутников. Первые рискуют выйти из строя из-за торможения о разогревшуюся атмосферу, а вторые, удалившись от Земли на 36 тысяч километров, могут столкнуться с облаком солнечной плазмы. Возможны перебои с радиосвязью, но для окончательной оценки последствий вспышки необходимо дождаться как минимум конца недели. Ухудшение самочувствия людей из-за изменений геомагнитной обстановки научно не доказано.

Возможно усиление солнечной активности

Последний раз подобная вспышка наблюдалась 7 сентября 2005 года, однако самая сильная (с баллом Х28) произошла еще раньше (4 ноября 2003 года). В частности, 28 октября 2003 года из строя вышел один из высоковольтных трансформаторов в шведском городе Мальмё, обесточив на час весь населенный пункт. От бури пострадали и другие страны. За несколько дней до событий сентября 2005 года была зафиксирована менее мощная вспышка, и ученые полагали, что Солнце успокоится. То, что происходит в последние дни, сильно напоминает ту ситуацию. Подобное поведение светила означает, что рекорд 2005 года в ближайшее время все еще может быть побит.

Изображение: NASA / GSFC

Однако за последние три века человечество пережило и еще более мощные солнечные вспышки, чем произошедшие в 2003 и 2005 годах. В начале сентября 1859 года геомагнитная буря привела к отказу телеграфных систем Европы и Северной Америки. Причиной назвали мощный выброс корональной массы, достигший планеты за 18 часов и наблюдаемый 1 сентября британским астрономом Ричардом Кэррингтоном. Также имеются исследования, подвергающие сомнению последствия солнечной вспышки 1859 года, ученые , что магнитная буря затронула только локальные области планеты.

Солнечные вспышки трудно поддаются количественному описанию

Последовательной теории, описывающей формирование солнечных вспышек, пока не существует. Вспышки возникают, как правило, в местах взаимодействия солнечных пятен на границе областей северной и южной магнитных полярностей. Это приводит к быстрому высвобождению энергии магнитного и электрического полей, которая затем идет на разогрев плазмы (увеличение скорости ее ионов).

Наблюдаемые пятна - это участки поверхности Солнца с температурой примерно на две тысячи градусов Цельсия ниже температуры окружающей ее фотосферы (примерно 5,5 тысячи градусов Цельсия). На самых темных участках пятна линии магнитного поля перпендикулярны поверхности Солнца, на более светлых они ближе к касательной. Напряженность магнитного поля у таких объектов превышает его земное значение в тысячи раз, а сами вспышки связаны с резким изменением локальной геометрии магнитного поля.

Солнечная вспышка произошла на фоне минимума солнечной активности. Вероятно, таким образом светило сбрасывает энергию и скоро успокоится. Подобного рода события происходили и ранее в истории звезды и планеты. То, что сегодня это привлекает внимание общественности, говорит не о внезапной угрозе человечеству, а о научном прогрессе - несмотря ни на что, ученые постепенно все лучше понимают процессы, происходящие со звездой, и сообщают об этом налогоплательщикам.

Где следить за ситуацией

Информацию о солнечной активности можно почерпнуть из множества источников. В России, например, - с сайтов двух институтов : и (первый на момент написания статьи вывесил прямое предупреждение об опасности для спутников из-за солнечной вспышки, второй содержит удобный график вспышечной активности), которые используют данные американских и европейских служб. Интерактивные данные о солнечной активности, а также оценку текущей и будущей геомагнитной ситуации можно найти на сайте

6 сентября 2017 года на Солнце произошла крупнейшая за двенадцать лет вспышка. Зарегистрированное излучение показывает, что случился корональный выброс массы. Лайф разобрался, чем это может грозить обычным людям.

За суетой обычных дней и простых сиюминутных проблем мы забываем о том, как сложен и хрупок наш мир. Что Солнце - это не просто светящийся баскетбольный мяч в небе, дающий свет днём и возможность сделать красивые фоточки по утрам и вечерам, а огромная звезда, чья масса составляет 99,87 процента от массы всей Солнечной системы. 6 сентября случилось очередное напоминание - на Солнце произошла крупнейшая за последние двенадцать лет вспышка.

Самое время разобраться, чем же это может грозить нам, простым землянам, космонавтам на Международной космической станции, не имеющим спасительной защиты атмосферы, и даже спутникам, работающим на орбите Земли.

Вспышка справа!

Разберёмся с терминами. Что же такое вспышка, если Солнце и так огромный шар, состоящий преимущественно из водорода, внутри которого идут термоядерные реакции, высвобождая гигантское количество энергии, света и тепла. Да, это так, но благодаря своей структуре Солнце для своих размеров и массы "горит" достаточно равномерно.

Однако иногда в атмосфере Солнца происходит взрывной выброс энергии, называемый вспышкой. Этот процесс захватывает все слои солнечной атмосферы: фотосферу, хромосферу и корону Солнца. В этот момент (а импульсная фаза солнечных вспышек длится всего несколько минут) происходит мощнейший выброс энергии - иногда до 15 процентов от всей энергии, выделяемой Солнцем за секунду.

Даже просто перевести энергию вспышки в близкие и понятные величины очень сложно - настолько она огромная. Мощная вспышка выделяет энергии около 160 миллиардов мегатонн в тротиловом эквиваленте, что, для сравнения, составляет приблизительный объём мирового потребления электроэнергии за один миллион лет.

Иногда в этот же момент происходит ещё и корональный выброс массы - часть солнечного вещества с силой выбрасывается за пределы атмосферы Солнца. Учёные до сих пор не определили, связаны ли эти явления между собой или нет. Достаточно часто солнечное вещество выбрасывается параллельно вспышкам, но иногда это происходит независимо друг от друга. Шестого сентября на Солнце произошла не только вспышка, но и корональный выброс массы.

В выбросе находится плазма, состоящая из электронов и протонов. Масса выброса может составлять до 10 миллиардов тонн вещества, которое летит в космосе с средней скоростью 400 километров в секунду и достигает Земли в течение одного - трёх дней. И если основной эффект солнечной вспышки достигает Земли за восемь с половиной минут, то в случае коронального выброса массы эффект оказывается растянутым и начинается спустя несколько суток после момента выброса.

Стоит отметить, что Солнце - это шар, поэтому часть вспышек с Земли просто не видна. Они происходят на противоположной стороне Солнца и никак не влияют на нас. В данном случае Земле не повезло: вспышка случилась в геоэффективной области вблизи линии Солнце - Земля, откуда воздействие на нашу планету максимально.

Учёные начали измерять мощность солнечных вспышек и фиксировать корональные выбросы массы относительно недавно, с шестидесятых годов прошлого века. Мощность вспышки определяется латинскими буквами A, B, C, M или X и числовым значением за ней. Произошедшая вспышка оценивается учёными как X9.3, при этом самая мощная вспышка из когда-либо зафиксированных - X28. Что самое странное, нынешняя вспышка произошла ровно через двенадцать лет после последней вспышки такой силы (7 сентября 2005 года). Кроме того, сейчас период спада солнечной активности. Астрономы не ожидали, что подобное явление может произойти.

Чем грозит такая вспышка?

потрепать". Взаимодействуя с магнитосферой Земли, потоки плазмы вызывают возмущения в ней - бури, ощущающиеся метеозависимыми людьми.

Всё дело в том, что организм человека привык к магнитному полю Земли и использует его в повседневной жизни, например для ориентации в пространстве. Возмущения же магнитного поля вызывают разбалансировку систем организма у некоторых людей, наиболее чувствительных к этому явлению. Считается, что геомагнитные бури вызывают мигрень, бессонницу, скачки давления. Однако всё это сугубо индивидуально. Сказать, как влияют геомагнитные бури, вызываемые вспышками на Солнце, на конкретного человека, сложно. Учёные всё ещё изучают этот вопрос, есть даже целый раздел биофизики, изучающий влияние изменений активности Солнца на земные организмы, - гелиобиология.

Поэтому самое главное - не паниковать. Как правило, метеозависимые люди хорошо знают, что у них может заболеть от геомагнитных бурь. Метеозависимым, а также лицам с хроническими заболеваниями следует отслеживать приближение магнитных бурь и заранее исключать в этот период какие-либо события, действия, которые могут привести к стрессу. Лучше всего в это время быть в состоянии покоя, отдыхать и сократить любые физические и эмоциональные перегрузки.

Что со связью?

Союз", который выполняет на МКС роль корабля-спасателя. Однако конструкция всех модулей станции обеспечивает нормальную защиту экипажа от всплесков солнечной активности, во время которых сильно повышается радиационный фон. Космонавты ежедневно проводят индивидуальный учёт дозы полученной на борту радиации.

В общем и целом бояться вспышек на Солнце не надо. Это достаточно частое явление, за свою жизнь множество из них вы пережили, даже не узнав о том, что произошло. Иначе можно уподобиться Незнайке из Цветочного города и устроить переполох на пустом месте.

А Незнайка побежал во всю прыть домой и давай кричать:

- Братцы, спасайся! Кусок летит!

- Какой кусок? - спрашивают его.

- Кусок, братцы! От Солнца оторвался кусок. Скоро шлёпнется - и всем будет крышка. Знаете, какое Солнце? Оно больше всей нашей Земли!

- Что ты выдумываешь!

- Ничего я не выдумываю. Это Стекляшкин сказал. Он в свою трубу видел.

Все выбежали во двор и стали смотреть на Солнце. Смотрели, смотрели, пока из глаз не потекли слёзы. Всем сослепу стало казаться, будто Солнце на самом деле щербатое. А Незнайка кричал: "Спасайся кто может! Беда!"

Б.В. Сомов, доктор физико-математических наук, Государственный астрономический институт им. П.К. Штернберга, МГУ

Во время большой вспышки поток жесткого электромагнитного излучения Солнца возрастает во много раз. В невидимых для нас ультрафиолетовых (УФ), рентгеновских и гамма-лучах наше светило становится "ярче тысячи солнц". Излучение достигает орбиты Земли через восемь минут после начала вспышки. Через несколько десятков минут приходят потоки заряженных частиц, ускоренных до гигантских энергий, а через двое-трое суток - огромные облака солнечной плазмы. К счастью, озоновый слой атмосферы Земли защищает нас от опасного излучения, а геомагнитное поле - от частиц. Однако даже на Земле, тем более в космосе, солнечные вспышки опасны и необходимо уметь их заблаговременно прогнозировать. Что же такое солнечная вспышка, как и почему она возникает?

Солнце и мы

Ближайшая к нам звезда - Солнце - родилась около 5 млрд. лет тому назад. Внутри нее идут ядерные реакции, благодаря которым существует жизнь на Земле. Построенные на основе современных наблюдений теоретические модели строения и эволюции Солнца не оставляют сомнений в том, что оно будет сиять еще миллиарды лет.

Солнечное излучение - главный источник энергии для земной атмосферы. Фотохимические процессы в ней особенно чувствительны к жесткому УФ-излучению, которое вызывает сильную ионизацию. Поэтому когда Земля была молодой, жизнь существовала только в океане. Позднее, примерно 400 млн. лет назад, появился озоновый слой, поглощающий ионизирующее изучение, и жизнь вышла на сушу. С тех пор озоновый слой защищает нас от разрушительного воздействия жесткого УФ-излучения.

Магнитное поле Земли, ее магнитосфера препятствует проникновению к Земле быстрых заряженных частиц солнечного ветра (Земля и Вселенная, 1974, № 4; 1999, № 5). Когда его порывы взаимодействуют с магнитосферой, часть частиц все-таки высыпается вблизи магнитных полюсов Земли, порождая полярные сияния.

Увы, гармонию наших отношений с Солнцем нарушают солнечные вспышки.

Вспышки на Солнце

Последние десятилетия сразу несколько космических обсерваторий пристально вглядываются в "разгневанное" Солнце с помощью специальных рентгеновских и УФ-телескопов. Сейчас таких космических аппаратов четыре: американские "SOHO" (Solar and Heliospheric Observatory - солнечная гелиосферная обсерватория; Земля и Вселенная, 2003, № 3), "TRACE" (Transition Region and Coronal Explorer - исследователь короны и переходного слоя), "RHESSI" (Ramaty High Energy Solar Spectroscopic Imager - солнечный спектральный телескоп высокоэнергичного излучения им. Рамати) и российский спутник "Коронас-Ф" (Земля и Вселенная, 2002, № 6).

Огромный интерес к вспышкам на Солнце не случаен. Большие вспышки оказывают сильное воздействие на околоземное космическое пространство. Потоки частиц и излучения опасны для космонавтов. Кроме того, они могут повредить электронные приборы космических аппаратов, нарушить их работу.

УФ- и рентгеновские лучи от вспышки внезапно увеличивают ионизацию в верхних слоях атмосферы Земли, в ионосфере. Это может приводить к нарушениям радиосвязи, сбоям в работе радионавигационных приборов кораблей и самолетов, радиолокационных систем, длинных линий электроснабжения. Частицы высоких энергий, проникая в верхнюю атмосферу Земли, разрушают озоновый слой. Содержание озона уменьшается из года в год. Научную дискуссию вызывает вопрос о вероятной связи вспышечной активности Солнца с климатом на Земле.

Ударные волны и выбросы солнечной плазмы после вспышек сильно возмущают магнитосферу Земли, вызывают магнитные бури (Земля и Вселенная, 1999, № 5). Важно, что возмущения магнитного поля на поверхности Земли могут влиять на живые организмы, на состояние биосферы Земли (Земля и Вселенная, 1974, № 4; 1981, № 4), хотя это воздействие кажется пренебрежимо малым по сравнению с другими факторами нашей повседневной жизни.

Прогнозирование вспышек

Необходимость прогнозирования солнечных вспышек возникла давно, но особенно остро в связи с пилотируемыми космическими полетами. Долгое время почти независимо и практически безрезультатно разрабатывались два подхода к решению этой проблемы. Их можно условно назвать синоптическим и каузальным (причинным). Первый - сходный с предсказаниями погоды - базировался на изучении морфологических особенностей предвспышечных ситуаций на Солнце. Второй метод подразумевает знание физического механизма вспышки и, соответственно, распознавание предвспышечной ситуации путем ее моделирования.

До начала космических исследований, на протяжении многих лет, наблюдения вспышек велись преимущественно в оптическом диапазоне электромагнитного излучения: в линии водорода Нa и в "белом свете" (непрерывном спектре видимого излучения). Наблюдения в магниточувствительных линиях позволили установить тесную связь вспышек с магнитными полями на поверхности Солнца (фотосфере). Часто вспышка видна как увеличение яркости хромосферы (слой непосредственно над фотосферой) в виде двух светящихся лент, расположенных в областях магнитных полей противоположной полярности. Радионаблюдения подтверждали эту закономерность, имеющую принципиальное значение для объяснения механизма вспышки. Однако его понимание оставалось на чисто эмпирическом уровне, а теоретические модели (даже самые правдоподобные) казались совершенно не убедительными (Земля и Вселенная, 1974, № 4).

Рис. 1 - Солнечная вспышка (рентгеновский балл Х5.7), зарегистрированная 14 июля 2000 г. со спутников "TRACE" и "Yohkoh". Видна аркада вспышечных петель: слева в УФ (195 А); в центре - в мягком рентгеновском излучении; справа - источники жесткого рентгеновского излучения (53 - 94 кэВ), расположенные вдоль вспышечных лент - основания аркады. NL - фотосферная нейтральная линия.

Уже первые внеатмосферные наблюдения с помощью космических аппаратов показали, что солнечные вспышки представляют собой корональное, а не хромосферное явление. Современные многоволновые наблюдения Солнца с космических и наземных обсерваторий свидетельствуют о том, что источник энергии вспышки расположен над аркадой вспышечных петель (светлые полосы на рисунке слева) в короне, наблюдаемых в мягком рентгеновском и УФ-излучении. Аркады опираются на хромосферные вспышечные ленты, которые расположены по разные стороны линии раздела полярности фотосферного магнитного поля, или фотосферной нейтральной линии.

Энергия вспышки

Солнечная вспышка - самое мощное из всех проявлений активности Солнца. Энергия большой вспышки достигает (1-3)x1032 эрг, что приблизительно в сто раз превышает тепловую энергию, которую можно было бы получить при сжигании всех разведанных запасов нефти и угля на Земле. Эта гигантская энергия выделяется на Солнце за несколько минут и соответствует средней (за время вспышки) мощности 1029 эрг/с. Однако это меньше сотых долей процента от мощности полного излучения Солнца в оптическом диапазоне, равной 4x1033 эрг/с. Она называется солнечной постоянной. Поэтому при вспышке не происходит заметного увеличения светимости Солнца. Лишь самые большие из них можно заметить в непрерывном оптическом излучении.

Откуда и как черпает свою огромную энергию солнечная вспышка?

Источник энергии вспышки - магнитное поле в атмосфере Солнца. Оно определяет морфологию и энергетику той активной области, где произойдет вспышка. Здесь энергия поля много больше, чем тепловая и кинетическая энергия плазмы. Во время вспышки происходит быстрое превращение избыточной энергии поля в энергию частиц и изменения плазмы. Физический процесс, обеспечивающий такое превращение, называется магнитным пересоединением.

Что такое пересоединение?

Рассмотрим простейший пример, который демонстрирует явление магнитного пересоединения. Пусть два параллельных проводника расположены на расстоянии 2l друг от друга. По каждому из проводников течет электрический ток. Магнитное поле этих токов состоит из трех различных магнитных потоков. Два из них - Ф1 и Ф2 - принадлежат соответственно верхнему и нижнему токам; каждый поток охватывает свой проводник. Они расположены внутри сепаратрисной линии поля А1А2 (сепаратрисы), которая образует "восьмерку" с точкой пересечения X. Третий поток расположен вне сепаратрисной линии. Он принадлежит одновременно обоим проводникам.

Если мы сместим оба проводника в направлении друг к другу на величину dl, то магнитные потоки перераспределятся. Собственные потоки каждого из токов уменьшатся на величину dФ, а их общий поток увеличится на ту же величину (объединенный поток Ф1" и Ф2"). Этот процесс называется пересоединением линий магнитного поля, или просто магнитным пересоединением. Он осуществляется следующим образом. Две линии поля подходят к точке X сверху и снизу, сливаются c ней, образуя новую сепаратрису, и затем соединяются так, чтобы образовать новую линию поля, которая охватывает оба тока.


Рис. 2 - Магнитное поле двух параллельных электрических токов одинаковой величины I:

a) в начальный момент времени; А1А2 - сепаратриса; Ф1Ф2 - магнитный поток до пересоединения;

А3 - линия поля общего магнитного потока двух токов;

б) после смещения проводников на расстояние dl друг к другу. А1А2 - новая сепаратриса; Ф1Ф2 - пересоединенный магнитный поток. Он стал обшим потоком двух токов; линия X проходит перпендикулярно плоскости рисунка;

в) магнитное пересоединение в плазме. Показано промежуточное (предвспышечное) состояние с непересоединяющим (медленно пересоединяющим) токовым слоем CL.

Отметим, что такое пересоединение в вакууме при всей его простоте - реальный физический процесс. Его можно легко воспроизвести в лаборатории. Пересоединение магнитного потока индуцирует электрическое поле, величину которого можно оценить, разделив величину dФ на характерное время процесса пересоединения dt, то есть время движения проводников. Это поле будет ускорять заряженную частицу, помещенную вблизи точки Х, точнее говоря, линии Х.

Понравилась статья? Поделитесь ей