Контакты

Почему мы видим удаленные предметы так хорошо. Зрительная сенсорная система

Др.Ховард Гликсмен

Как говорят, «видеть – это верить». Возможность физически видеть или определять какой-либо объект или явление, дает нам гораздо больше уверенности в их существовании. Более того, имея возможность интеллектуально видеть или понимать что-либо, обеспечивает нас высшим уровнем оправдания нашей веры в способность знать правду. Все же, выражение «Видеть – значит верить» само по себе представляет фальшивое понимание того, что означает слово «верить». Если можно физически определять или действительно что-то понимать, то не нужно верить в то, что уже известно посредством ощущений или интеллекта. Верование во что-нибудь требует, чтобы оно либо не ощущалось восприятием, либо не полностью понималось интеллектом. Если кое-что можно увидеть с помощью ощущений или полного понимания интеллектом, тогда единственным ограничивающим фактором для каждого из нас является наше доверие тому, что все, что мы видим и думаем, является правдой.

После всего вышесказанного интересно будет порассуждать на тему достаточно сильной зависимости большинства научных исследований от нашей возможности восприятия посредством зрения. От конструирования отслеживающих устройств, необходимых для наблюдений, до сопоставления данных для анализа и интерпретации: везде способность видеть является очень важной для нас, обеспечивая возможность анализировать окружающий мир.

Но как происходит это таинство зрения? Каким образом мы способны воспринимать свет и любоваться теми, кто нам дорог, восторгаться величием природы и рассматривать гениальные произведения искусства? Эта, а также две последующие статьи будут посвящены исследованию данного вопроса. Как в действительности мы способны улавливать определенный диапазон электромагнитной энергии и превращать его в изображение для дальнейшего рассмотрения?

От фокусирования света на сетчатке до создания нервных импульсов, которые посылаются в мозг, где это все интерпретируется как восприятие зрения; мы рассмотрим необходимые компоненты, которые делают зрение реальностью для человечества. Но я вас предостерегаю - несмотря на обширные знания в области процесса зрения, а так же в области причинной диагностики того, почему оно может быть нефункциональным, все же мы абсолютно не имеем понятия, как мозг выполняет этот трюк.

Да, мы знаем о преломлении света и биомолекулярных реакциях в клетках фоторецепторов сетчатки, все это правда. Мы даже понимаем, как эти нервные импульсы влияют на другую смежную нервную ткань и на выделение различных нейротрансмиттеров. Нам известны разные пути, по которым проходит зрение в пределах мозга, что вызывает смешивания нейровозбуждающих сообщений в визуальной коре головного мозга. Но даже эти знания не могут нам подсказать, как мозг может превратить электрическую информацию в панорамное обозрение Большого каньона, в изображение лица новорожденного ребенка, а также искусства Микеланджело или великого Леонардо. Мы только знаем, что мозг делает эту работу. Это все равно, что спросить о том, что могло бы быть биомолекулярной основой для мысли. В наше время наука не имеет необходимых средств для ответа на данный вопрос.

Глаз

Глаз является сложным органом восприятия, который способен принимать лучи света и фокусировать их на светочувствительных рецепторах, содержащихся в сетчатке. Есть много частей глаза, которые играют важную роль либо непосредственно при выполнении этой функций, либо поддерживая ее (рис.1,2,3).

Рис.1 Вид глаза с отмеченными частями. Смотрите текст для дальнейшего описания характеристик, функций и эффектов их нарушения. Иллюстрации взяты из сайта: www.99main.com/~charlief/Blindness.htm

Рис.2 Вид глаза снаружи с некоторыми из его наиболее важных частей. Иллюстрации получены из сайта: www.99main.com/~charlief/Blindness.htm

Рис.3 Слезы производятся в слезной железе и протекают по поверхности глаза через веки, затем просачиваются в нос сквозь слезно-носовой канал. Поэтому ваш нос затрудняет дыхание, когда вы много плачете.

Веко должно быть открытым и мускулы глаза должны разместить его таким образом, чтобы он располагался по одной линии с лучами света, которые проектируются от объекта рассматривания. Когда лучи света приближаются к глазу, сначала они сталкиваются с роговой оболочкой, которая омывается в необходимом количестве слезами слезной железы. Кривизна и природа роговицы позволяют фотонам света преломляться, как только они начинают концентрироваться в нашей области центрального зрения, которая называется пятном.

Затем свет проходит через внешнюю камеру, которая находится позади роговицы и перед радужной оболочкой и хрусталиком. Внешняя камера наполнена водяной жидкостью, которая называется водянистой влагой, что произошла от структур, расположенных поблизости, и разрешает свету проникать дальше в глаз.

От внешней камеры свет продолжает направляться через регулируемое отверстие в радужке, называемым зрачком, который позволяет глазу контролировать количество входящего света. Затем свет проникает в переднюю (внешнюю) поверхность хрусталика, где потом происходит преломление. Свет продолжает двигаться через хрусталик и выходит через обратную (заднюю) поверхность, снова преломляясь на своем пути к фокусированию на месте центрального зрения – ямка, которая содержит высокую плотность определенных клеток-фоторецепторов. Именно на этом важном этапе глаз должен сделать все необходимое, чтобы позволить всем фотонам света, отраженным от объекта рассматривания, сфокусироваться на предназначенном месте в сетчатке. Он выполняет это, активно изменяя кривизну хрусталика посредством действия цилиарного мускула.

Затем фотоны света направляются через гелеобразное стекловидное тело, которое в значительной степени поддерживает глазное яблоко, и направляется в сетчатку. После этого активизируются клетки фоторецептора в сетчатке, позволяя, в конечном счете, нервным импульсам посылаться вдоль оптического нерва к визуальной коре головного мозга, где они интерпретируются как «зрение».

Представим, что нам понадобилось объяснить происхождение первого, чувствительного к свету «пятна». Эволюция более сложных глаз, с такой точки зрения, является простой… не так ли? Не совсем. Для каждого из различных компонентов необходимо наличие уникальных протеинов, выполняющих уникальнейшие функции, что, в свою очередь, требует наличия уникального гена в ДНК этого существа. Ни гены, ни протеины, которые они кодируют, не функционируют самостоятельно. Существование уникального гена или протеина означает, что вовлекается уникальная система других генов или протеинов со своей функцией. В такой системе отсутствие хотя бы одного системного гена, протеина или молекулы означает, что целая система становиться нефункциональной. Принимая во внимание тот факт, что эволюция одного гена или протеина никогда не наблюдалась и не воспроизводилась в лабораторных условиях, такие, на первый взгляд незначительные различия, внезапно становятся очень важными и огромными.

Фокус статьи

В этой статье мы рассмотрим некоторые из частей глаза и то, как они выполняют три фундаментальные функции: защита и поддержка; передача света; и фокусирование изображения. Мы также увидим, что происходит, когда возникают проблемы и зрение подвергается риску. Это подведет нас размышлениям над вопросом макроэволюции и постепенного развития механизмов.

В следующей статье мы рассмотрим клетки фоторецепторов и взаимосвязь их размещения в сетчатке с их функциями, а также поговорим о биомолекулярной основе для нервного воспроизведения импульсов вдоль оптического нерва. В мы рассмотрим, как визуальное сообщение отправляется в мозг посредством различных путей, и получим общее представление о сложной природе того, как визуальная кора головного мозга «видит».

Служить и защищать

Существует много компонентов, которые несут ответственность не только за защиту и оберегание глаза, но и обеспечивают его питательными веществами и физической поддержкой. Без наличия какого-либо из этих важных факторов, мы не смогли бы видеть так хорошо, как это происходит сейчас. Вот список одних из наиболее важных частей с кратким изложением того, что они делают для глаза.

Глазная впадина: состоит из пяти разных костей, которые срастаются: лобная кость, решетчатая кость, скуловая кость, челюстная кость, слезная кость, что обеспечивает костную защиту примерно 2/3 глазного яблока. Эти кости также обеспечивают надежную основу для происхождения сухожилий мышц, которые несут ответственность за движение глаза.

Веки: верхние и нижние , каждой из которых нужен нейромышечный контроль и рефлекторная деятельность для защиты глаза; защищают глаз от воздействия света, пыли, грязи, бактерий, т.д. Мигание или рефлекс роговицы обеспечивает быстрое закрытие глаза, как только роговица раздражается при попадании на нее инородного тела, к примеру, пыли или грязи. Ослепительный рефлекс обеспечивает быстрое закрытие век, когда глаз подвергается воздействию очень яркого света, таким образом, блокируя 99% света, проникающего в глаз. Рефлекс угрозы обеспечивает мгновенное закрытие век от разных движений, которые направляются к глазу. Стимулы для инициирования этих двух последних рефлексов происходят из сетчатки. Вдобавок к функции защиты, мигая, веки распространяют слезную оболочку вдоль передней поверхности глаза, что необходимо для роговицы.

Слезная оболочка и ее образование: включает три слоя, состоящих из масла, воды и слизистой жидкости; вырабатывается сальной железой век, слезной железой, клетками конъюнктивы. Слезная оболочка удерживает влагу, сохраняет гладкую поверхность на передней части глаза, облегчая проведение света, оберегает глаз от заражения и повреждения.

Склера: известна также как белок глаза. Это внешний защитный слой, покрытый конъюнктивой, которая вырабатывает и выделяет жидкость, увлажняющую и смазывающую глаз.

Сосудистая оболочка глаза: этот слой расположен между склерой и сетчаткой. Он обеспечивает циркуляцию крови к задней части глаза и к пигментированному эпителию сетчатки (ПЭС), расположенному прямо за ней и поглощающему свет. Таким образом, когда свет проникает сквозь сетчатку, слой, что расположен с задней стороны, поглощает его и предотвращает обратное отражение, тем самым, предотвращая искажение зрения.

Роговая оболочка глаза: эта специализированная соединяющая ткань находится в той же плоскости, что и склера, к которой она примыкает на корнеосклеральной точке соединения. Тем не менее, она находится там, где свет проникает в глаз. В роговице отсутствуют кровяные сосуды, то есть, она бессосудистая. Это одна из наиболее важных характеристик, которая разрешает ей оставаться четкой, чтобы пропускать свет в оставшуюся часть глаза. Роговица получает воду, кислород и питательные вещества от двух источников: с помощью слез, которые, выделяясь слезной железой, равномерно распределяются по роговице под действием век, и от водянистой влаги, присутствующей во внешней камере (смотрите ниже). Пока роговица защищает глаз, веки защищают ее. Нейромускулатурная система в теле обеспечивает роговицу наибольшей густотой чувствительных нервных волокон, чтобы они могли защищать ее от малейшего раздражения, которое может закончиться заражением. Один из последних рефлексов в предсмертном состоянии – это рефлекс роговицы, который проверяется прикосновением клочка ткани до роговицы глаза человека, находящегося без сознания. Позитивный рефлекс вызовет внезапную попытку закрыть веки, что можно увидеть с помощью движения мышц вокруг глаза.

Водянистая влага: это водянистая жидкость, которая производится цилиарным телом и выделяется во внешнюю камеру, расположенную прямо за роговицей и перед радужкой. Эта жидкость питает не только роговицу, но и хрусталик, и играет роль в образовании формы передней части глаза, занимая место в этой области. Водянистая жидкость вытекает во внешнюю камеру через каналы Шлемма.

Стекловидное тело: это толстое, прозрачное и гелеобразное вещество, наполняющее яблоко глаза и придающее ему форму и вид. Оно имеет способность сжиматься, а затем возвращаться к своей обычной форме, тем самым, позволяя глазному яблоку противостоять травмам без серьезных повреждений.

Нарушение защиты

Примеры того, что может случиться в реальной жизни с этими разнообразными компонентами, когда они не функционируют, и как это может повлиять на зрение, дает нам понимание, насколько важным является каждый из этих компонентов для сохранения надлежащего зрения.

  • Травма глазницы может причинить серьезные повреждения глазному яблоку, что проявляется в его внутреннем повреждении, а также ущемлении нервов и мышц, которые управляют глазом, и это проявляется в двойном зрении и проблемах восприятия глубины.
  • Нарушение функционирования век может происходить от воспаления или повреждения 7-го черепно-мозгового нерва (лицевого нерва), когда возможность правильно закрывать глаз подвергается риску. Это может проявиться в повреждении роговицы, поскольку веки больше не смогут ее защищать от окружающей среды и травм, мешая тем временем слезной оболочке проходить через ее поверхность. Зачастую, пациент будет носить глазную повязку и наносить мазь на нижний мешочек, чтобы поддерживать влагу в роговице и предотвратить повреждение.
  • Синдром Шегрена и синдром «сухого глаза» проявляются в увеличении риска образования слез, который является не только раздражающим состоянием, но проявляется в нечетком зрении.
  • Повреждение роговицы, такое как заражение или травма, может проявляться в последующем повреждении структур, находящихся за ней, редко в эндофтальмите, а так же в сильной инфекции внутренней части глаза, что часто приводит к его хирургическому удалению.
  • Полный разрыв через слои роговицы может проявляться в выделении водянистой влаги глаза из внешней камеры, вследствие чего передняя часть глаза становится гладкой, и тогда внешняя камера существует только потенциально, приводя к потере зрения.
  • Стекловидное тело глаза часто изнашивается, начинает втягиваться и может стянуть сетчатку с ее места крепления, что приводит к ее отсоединению.

Итак, подведем итоги. Из вышеописанного становиться видно, что каждая часть глаза является абсолютно необходимой для поддержки и функционирования зрения. Сетчатка играет важную роль, имея фоточувствительные клетки, которые могут посылать сообщения в мозг для интерпретации. Но каждый из упомянутых компонентов играет важную роль в поддержке, без которой наше зрение пострадало бы либо вообще не смогло бы существовать.

Макроэволюция и ее последовательный механизм обязан еще более детально объяснять, как человеческое зрение, согласно ее утверждению, развилось посредством случайных мутаций от светочувствительных пятен у беспозвоночных, принимая во внимание сложную структуру, физиологическую природу и взаимозависимость всех вышеупомянутых компонентов.

Разрешите свету проходить

Для того чтобы глаз функционировал должным образом, многие из его частей должны быть способными разрешать свету проходить через них, при этом, не разрушая и не искажая его. Другими словами, они должны быть светопроницаемыми. Посмотрите на остальные части тела, и вы вряд ли найдете другие ткани, обладающие такой жизненной особенностью, которая разрешает проникновения света. Макроэволюция должна быть способной объяснить не только генетические механизмы происхождения макромолекул, составляющих части глаз, но и объяснить также, каким образом получилось так, что они обладают уникальной особенностью быть светопроницаемыми и размещаться в одном органе тела, что необходимо для правильного функционирования.

Роговица защищает глаз от окружающей среды, но также она разрешает свету проникать в глаз на его пути к сетчатке. Прозрачность роговицы зависит от отсутствия в ней кровяных сосудов. Но клетки роговицы сами требуют воды, кислорода и питательных веществ для выживания, как любая другая часть тела. Они получает эти жизненно необходимые вещества от слез, которые покрывают переднюю часть роговицы и от водянистой влаги, которая омывает заднюю часть. Ясно, что выдвигать предположения насчет развития светопроницаемой роговицы, не принимая во внимание то, как она сама могла работать и оставаться светопроницаемой в течение всего процесса, - это, на самом деле, сильное упрощение весьма сложного явления, чем это предполагалось ранее. Повреждение роговицы заражением или травмой может привести к рубцеванию, вследствие чего может развиться слепота, поскольку свет более уже не будет проникать через нее в сетчатку. Самой распространенной причиной слепоты в мире является трахома - инфекция, которая повреждает роговицу.

Внешняя камера , которая с внешней стороны связана с роговицей, наполняется водянистой влагой , производимой из ресничного тела. Эта влага является чистой водяной жидкостью, которая не только разрешает свету проходить невредимым, но и поддерживает роговицу и хрусталик. Существует много других жидкостей, которые вырабатываются в теле, как, например, кровь, моча, синовиальная жидкость, слюна и т.д. Большинство из них не способствуют передаче света в том объеме, который необходим для зрения. Макроэволюция должна также объяснить развитие ресничного тела и его способность вырабатывать эту водяную влагу, которая наполняет, формирует и поддерживает внешнюю камеру. Также должна быть объяснена, с точки зрения макроэволюции, необходимость водяной влаги для зрения, в том смысле, что в реальности она обслуживает еще и другие ткани (роговицу и хрусталик), которые очень важны для продолжения функционирования. Какие из этих компонентов появились первыми, и как они функционировали друг без друга?

Радужка (радужная оболочка) – это протяженность пигментированной сосудистой оболочки глаза, которая придает ему цвет. Радужка контролирует количество света, поступающего далее к сетчатке. Она состоит из двух разных видов мышц, обе из которых контролируются нервными клетками, регулируя размер открытия, которое называются зрачком. Сфинктер зрачка (круговая суживающая мышца), который размещается вдоль края радужки, сокращается, чтобы закрывать отверстие в зрачке. Расширяющая мышца идет радиально через радужку, как спицы колеса, и когда она сокращается, то зрачок открывается. Радужная оболочка очень важна для контролирования количества света, которое проникает в глаз в определенный период. Тот человек, который вследствие болезни глаз, называемой экземой, испытал на себе мучение из-за расширения зрачков, и ему поэтому приходилось выходить на свет, может полностью оценить данный факт.

Макроэволюция должна ответить, как развилась каждая мышца и в каком порядке, обеспечивая в то же время функционирование зрачка. Какая мышца возникла первой, и какие генетические изменения несли за это ответственность? Как функционировала радужка для промежуточного глаза, когда отсутствовала одна из мышц? Как и когда возник контролирующий нервный рефлекс?

Хрусталик расположен непосредственно за радужкой и помещен в специальный мешочек. Он удерживается на месте с помощью поддерживающих связок , присоединенных к цилиарному телу и называемых поясками. Хрусталик состоит из протеинов, которые позволяют ему оставаться прозрачным и светопроницаемым для передачи света в сетчатку. Как и роговица, хрусталик не содержит сосудов и, таким образом, зависит от водянистой влаги для получения воды, кислорода, питательных веществ. Образование катаракты может произойти вследствие травмы или изнашивания хрусталика, причиняя обесцвечивание и жесткость, что является помехой для нормального зрения. Как и роговица, хрусталик состоит из сложной сети тканей, построенных из разных макромолекул, которые зависят от генетического кода в ДНК. Макроэволюция должна объяснить точную природу генетических мутаций или клеточных трансформаций, которые должны были произойти в более примитивных светочувствительных органах, чтобы развить такую сложную ткань со своими уникальными способностями проводить свет.

Стекловидное тело , как упоминалось в предыдущей части, является светлой, гелеобразной субстанцией, которая заполняет большую часть яблока глаза и придает ему форму и вид. Еще раз подчеркнем, что тело может производить материал с нужными качествами и размещать его в органе, которому он нужен. Те же вопросы к макроэволюции, которые касались макромолекулярного развития роговицы и хрусталика, как упоминалось выше, относятся и к стекловидному телу, причем необходимо помнить, что все три ткани, имея различную физическую природу, находятся в правильных положениях, что позволяет человеку видеть.

Фокусирование, фокусирование, фокусирование

Я хотел бы, чтобы вы сейчас обернулись, выглянули в окно или через дверь комнаты, в которой вы находитесь, и посмотрели на какой-нибудь максимально удаленный объект. Как вы полагаете, сколько из всего, что видят ваши глаза, вы по-настоящему фокусируете? Человеческий глаз способен к высокой визуальной резкости. Это выражено в угловой разрешающей способности, т.е. в том, сколько градусов из 360 в визуальном поле может ясно сфокусировать глаз? Человеческий глаз может разрешать одну дуговую минуту, которая представляет 1/60 градуса. Полная луна занимает 30 дуговых минут в небе. Достаточно удивительно, не так ли?

Некоторые хищные птицы могут обеспечивать разрешение до 20 дуговых секунд, что предоставляет им большую визуальную резкость, чем наша.

А сейчас обернитесь снова и посмотрите на этот отдаленный объект. Но в этот раз заметьте, что, хотя с первого взгляда вам кажется, что вы фокусируетесь на большой части поля, когда в действительности вы концентрируетесь на том, куда вы смотрите. Тогда вы поймете, что это представляет всего лишь маленькую часть целого изображения. То, что вы сейчас испытываете – это центральное зрение, которое зависит от ямки и пятна, окружающего его в сетчатке. Этот участок состоит в основном из фоторецепторов-колбочек, которые лучше всего работают при ярком свете и позволяют видеть четкие изображения в цвете. Почему и как это происходит, мы будем рассматривать в следующей статье. По существу, люди, страдающие дистрофией желтого пятна, хорошо знают о том, что может случиться, когда их центральное зрение ухудшается.

Сейчас, обернитесь снова и посмотрите на объект, который находится вдалеке, но в этот раз обратите внимание, насколько неопределенным и недостаточно цветным является все остальное, что находится за пределами центрального зрения. Это ваше периферийное зрение, которое в основном зависит от фоторецепторов-палочек, которые выстилают оставшуюся часть сетчатки и обеспечивают нас ночным зрением. Это также будет обсуждаться в следующей статье. Мы рассмотрим, как сетчатка способна посылать в мозг нервные импульсы. Но для того, чтобы вы могли оценить необходимость в возможности глаза фокусироваться, вам сначала следует понять, как сетчатка работает. В конце концов – это то, на чем фокусируются световые лучи.

Кроме случаев перпендикулярного прохождения, лучи света изгибаются или преломляются, когда они проходят сквозь вещества разной плотности такие, как воздух или вода. Поэтому свет, помимо света, который проходит непосредственно через центр роговицы и хрусталика, будет преломляться в направлении главного фокуса на некотором расстоянии за ними (фокусное расстояние). Это расстояние будет зависеть от совместной силы роговой оболочки и хрусталика, направленной на преломление света и непосредственно связанной с их кривизной.

Для понимания того, как и почему глаз должен фокусировать свет, чтобы мы четко видели, важно знать, что все лучи света, проникающие в глаз от источника на расстоянии более 20 футов, перемещаются параллельно друг к другу. Чтобы глаз мог иметь центральное зрение, роговая оболочка и линза должны быть способными преломлять эти лучи таким образом, чтобы все они сводились на ямке и пятне. (см. рис.4)

Рис. 4 Данный рисунок демонстрирует, как глаз фокусируется на объектах, расположенных на расстоянии более 20 футов. Заметьте, насколько параллельны лучи света друг к другу при их приближении к глазу. Роговица и хрусталик работают вместе, чтобы преломлять свет к фокальной точке на сетчатке, которая совпадает с размещением ямки и пятна, окружающих ее. (см. рис.1) Иллюстрация взята на сайте: www.health.indiamart.com/eye-care.

Преломляющая сила хрусталика измеряется в диоптриях. Эта сила выражается как обратная величина от фокусного расстояния. Например, если фокусная длина линзы составляет 1 метр, тогда преломляющая мощность обозначается как 1/1 = 1 диоптрий. Таким образом, если сила роговой оболочки и хрусталика для сведения в оду точку лучей света составляла бы 1 диоптр, то размер глаза от передней части к задней должен был бы составлять 1 метр для того, чтобы свет мог фокусироваться на сетчатке.

На самом деле, преломляющая сила роговой оболочки – примерно 43 диоптрия, а преломляющая мощность хрусталика в состоянии спокойствия при рассматривании объекта, находящегося на расстоянии более 20 футов, составляет примерно 15 диоптрий. При подсчете объединенной преломляющей мощности роговой оболочки и хрусталика можно увидеть, что она составляет примерно 58 диоптрий. Это означает, что расстояние от роговицы к сетчатке составило примерно 1/58 = 0.017 метров = 17 мм для правильного фокусирования света на ямке. Что же нам известно? Это как раз столько, сколько оно составляет у большинства людей. Конечно же, это аппроксимация средней величины и определенный человек может иметь роговицу или хрусталик с другой кривизной, которая проявляется в разнообразных диоптрических возможностях и длине глазного яблока.

Главное здесь, что совместная преломляющая мощность роговицы и хрусталика отлично соотносится с размером глазного яблока. Макроэволюция должна объяснить генетические мутации, которые были ответственны не только за то, что примитивная светочувствительная ткань была помещена в хорошо защищенном яблоке, заполненном гелеобразным веществом, но и за то, что разные ткани и жидкость позволяют свету передаваться и фокусироваться с силой, которая соответствует размерам этого яблока.

Люди, испытывающие близорукость (миопию), имеют затруднения четкостью зрения, поскольку их глазное яблоко слишком длинное и роговая оболочка с линзой фокусируют свет от объекта перед сетчаткой. Это позволяет свету продолжать проходить через фокусную точку и распределятся на сетчатке, что приводит к расплывчатому зрению. Эту проблему можно разрешить с помощью очков или линз.

А сейчас давайте рассмотрим, что происходит, когда глаз пробует фокусироваться на чем-то, расположенном близко. По определению свет, который проникает в глаз от объекта, расположенного на расстоянии менее 20 футов, не проникает параллельно, а является расходящимся. (см. рис.5). Таким образом, чтобы быть способным фокусироваться на объекте, который находится близко от наших глаз, роговица и хрусталик каким-то образом должны быть способными преломлять свет сильнее, чем они могут сделать это в состоянии покоя.

Рис. 5 Рисунок демонстрирует нам, как глаз фокусируется на объектах, расположенных на расстоянии менее 20 футов. Заметьте, что лучи света, проникающие в глаз, не параллельные, а расходящиеся. Поскольку преломляющая мощность роговицы фиксирована, то хрусталик должен регулировать все необходимое, чтобы фокусироваться на близких объектах. Смотрите текст, чтобы понять, как она это делает. Иллюстрация взята на сайте: www.health.indiamart.com/eye-care.

Отойдите и посмотрите снова вдаль, а затем сфокусируйте свой взгляд на задней стороне своей руки. Вы почувствуете небольшое дергание в глазах, поскольку вы фокусируете взгляд на близком расстоянии. Этот процесс называется приспособлением. Что происходит на самом деле, так это то, что ресничная мышца под нервным контролем может сокращаться, что позволяет хрусталику больше выпучиваться. Это движение увеличивает преломляющую мощность линзы от 15 до 30 диоптрий. Такое действие заставляет лучи света сводиться больше и разрешает глазу фокусировать свет от близко расположенного объекта на ямку и пятно. Опыт нам показал, что существует ограничение насчет того, как близко глаз может фокусировать. Это явление называется ближайшей точкой ясного зрения.

По мере того, как люди стареют, около 40 лет у них развивается состояние, которое называется пресбиопией (старческая дальнозоркость), когда у них появляются затруднения с фокусировкой на близко расположенных объектах, поскольку хрусталик становится жестким и теряет свою эластичность. Поэтому часто можно увидеть пожилых людей, которые держат предметы на расстоянии от глаз, чтобы сфокусироваться на них. Вы также можете заметить, что они носят бифокальные очки или очки для чтения, с помощью которых они могут спокойно читать.

Макроэволюция должна быть в состоянии объяснить независимое развитие каждого компонента, необходимого для приспособляемости. Хрусталик должен быть достаточно эластичным, что позволяет ему изменять форму. Он должна находиться в висящем состоянии, чтобы двигаться. Цилиарная мышца и ее нервный контроль должны также произойти. Целый процесс нейромышечного функционирования и действия рефлекса должны объясняться пошаговым процессом на бимолекулярном и электрофизиологическом уровнях. К сожалению, ничего из перечисленного выше не было объяснено, прозвучали лишь расплывчатые, без особой конкретизации, оптимистические заявления на тему простоты этих заданий. Возможно, этого вполне может быть достаточно для тех, кто ранее был предан понятию макроэволюции, но совершенно не соответствует требованиям, предъявляемым даже к попыткам любого подлинно научного объяснения.

В завершение хочется напомнить, что для того, чтобы иметь такую сложную последовательность в глазе для правильного фокусирования, нужно также быть способным поворачивать глаза к интересующему нас предмету. Существует шесть внешних мышц глаза, функционирующих согласованно. Совместная работа глаз обеспечивает нам правильное восприятие глубины и зрение. Как только какая-нибудь мышца сокращается, противоположная ей расслабляется для обеспечения ровного движения глаз, когда они сканируют окружающую среду. Это происходит под контролем нервов и требует объяснения от макроэволюции.

(См. и ).

Какая мышца возникла первой, и какие генетические мутации несли за это ответственность? Как функционировал глаз без наличия других мышц? Когда и как развился нервный контроль мышц? Когда и каким образом произошла координация?

Изменения в фокусировании?

Из информации этой статьи все еще могут подниматься вопросы к макроэволюции, на которые не было ответа. Мы даже не затрагивали проблему биомолекулярной основы для функционирования фоторецептора, образования нервного импульса, оптического пути к мозгу, результатом чего является нервная возбуждающая система, интерпретируемая мозгом как «зрением». Множество экстраординарных сложных частей необходимы человеческому глазу для существования, длительности действия и функционирования. Наука сейчас обладает новой информацией об образовании макромолекул и тканей, лежащих в основе электрофизиологических механизмов функционирования фоторецепторов, и о взаимозависимых анатомических компонентах глаза, необходимых для надлежащего функционирования и выживания. Макроэволюция обязательно должна исследовать все эти вопросы, чтобы обеспечить объяснение происхождения такого сложного органа.

Несмотря на то, что в то время Дарвин не знал этого, интуиция на самом деле его не подвела, когда он высказал свое мнение в книге «О происхождении видов»: «Предполагать, что глаз […] мог сформироваться путем естественного отбора, кажется, я свободно признаю, что это является в высшей степени абсурдом».

Сегодня для принятия теории происхождения исследователи, обладающие современным пониманием того, каким образом на самом деле работает жизнь, потребовали бы намного больше доказательств, чем простое существование разных типов глаз в различных организмах. Каждый аспект функционирования глаза и зрения - генетический код, отвечающий за макромолекулярные структуры, содержащиеся в пределах каждой необходимой части, физиологическая взаимозависимость каждого компонента, электрофизиология «зрения», механизмы мозга, которые позволяют получать нервные импульсы и преобразовывать их в то, что мы называем «зрением» и т.д. - все это должно быть представлено в виде пошагового процесса для того, чтобы макроэволюцию можно было считать приемлемым механизмом происхождения.

Принимая во внимание все требования к макроэволюции, рассматривая логическое и тщательное объяснение развития человеческого глаза, одним из рациональных подходов к объяснению может быть сравнения функционирования глаза с фактическим данными, которые содержатся в человеческих изобретениях. Обычно говорят, что глаз похож на камеру, но на самом деле, это несколько не точное предположение. Поскольку в человеческих отношениях является, так сказать, универсальным понимание, что если «у» похож на «х», тогда согласно определению «х» хронологически предшествовал «у». Таким образом, при сравнивании глаза с камерой наиболее правдивым утверждением будет высказывание, что «камера похожа на глаз». Для любого здравомыслящего читателя очевидно, что камера не произошла сама собою, а образовалась человеческим интеллектом, то есть, она была произведением разумного дизайна.

Таким образом, является ли прыжком веры мнение, что, поскольку на основе опыта нам известно, что камера была создана интеллектуально и очень похожа на человеческий глаз, то глаз также был создан разумно? Что является более рациональным для разума: предложения макроэволюции или же разумный замысел?

В следующей статье мы тщательно исследуем мир сетчатки с ее клетками-фоторецепторами, а также биомолекулярную и электрофизиологическую основу для улавливания фотона, и как результат, передачу импульсов в мозг. Определенно, это добавит еще один слой сложности, требующий макроэволюционного объяснения, которое пока, на мой взгляд, еще не было представлено должным образом.

Доктор Ховард Гликсмен окончил университет в Торонто в 1978 году. Он практиковал медицину почти 25 лет в г. Оквилле, Онтарио и Спринг Хилл, Флорида. Недавно д-р Гликсмен оставил свою частную практику и начал практиковать паллиативную медицину для хосписа в своей общине. У него особый интерес к вопросам влияния на характер нашей культуры достижений современной науки, также в круг его интересов входят исследования на тему, что означает быть человеком.

Зрение - это биологический процесс, обусловливающий восприятие формы, размеров, цвета предметов, окружающих нас, ориентировку среди них. Оно возможно благодаря функции зрительного анализатора, в состав которого входит воспринимающий аппарат - глаз.

Функция зрения не только в восприятии световых лучей. Им мы пользуемся для оценки расстояния, объемности предметов, наглядного восприятия окружающей действительности.

Глаз человека — фото

В настоящее время из всех органов чувств у человека наибольшая нагрузка падает на органы зрения. Это обусловлено чтением, письмом, просмотром телепередач и других видов получения информации и работы.

Строение глаза человека

Орган зрения состоит из глазного яблока и вспомогательного аппарата, расположенных в глазнице - углублении костей лицевого черепа.

Строение глазного яблока

Глазное яблоко имеет вид шаровидного тела и состоит из трех оболочек:

  • Наружной - фиброзной;
  • средней - сосудистой;
  • внутренней - сетчатой.

Наружная фиброзная оболочка в заднем отделе образует белочную, или склеру, а спереди она переходит в проницаемую для света роговицу.

Средняя сосудистая оболочка называется так из-за того, что богата сосудами. Расположена под склерой. Передняя часть этой оболочки образует радужку , или радужную оболочку. Так ее называют из-за окраски (цвета радуги). В радужной оболочке находится зрачок - круглое отверстие, которое способно изменять величину в зависимости от интенсивности освещения посредством врожденного рефлекса. Для этого в радужке имеются мышцы, суживающие и расширяющие зрачок.

Радужка выполняет роль диафрагмы, регулирующей количество поступающего света на светочувствительный аппарат, и предохраняет его от разрушений, осуществляя привыкание органа зрения к интенсивности света и темноты. Сосудистая оболочка образует жидкость - влагу камер глаза.

Внутренняя сетчатая оболочка, или сетчатка - прилегает сзади к средней (сосудистой) оболочке. Состоит из двух листков: наружного и внутреннего. Наружный листок содержит пигмент, внутренний - светочувствительные элементы.


Сетчатая оболочка выстилает дно глаза. Если смотреть на нее со стороны зрачка, то на дне видно беловатое круглое пятно. Это место выхода зрительного нерва. Здесь нет светочувствительных элементов и поэтому не воспринимаются световые лучи, оно называется слепым пятном . Сбоку от него находится желтое пятно (макула) . Это место наибольшей остроты зрения.

Во внутреннем слое сетчатой оболочки расположены светочувствительные элементы - зрительные клетки. Их концы имеют вид палочек и колбочек. Палочки содержат зрительный пигмент - родопсин, колбочки - йодопсин. Палочки воспринимают свет в условиях сумеречного освещения, а колбочки - цвета при достаточно ярком освещении.

Последовательность прохождения света через глаз

Рассмотрим ход световых лучей через ту часть глаза, которая составляет его оптический аппарат. Вначале свет проходит через роговицу, водянистую влагу передней камеры глаза (между роговицей и зрачком), зрачок, хрусталик (в виде двояковыпуклой линзы), стекловидное тело (густой консистенции прозрачная среда) и, наконец, попадает на сетчатку.


В случаях, когда световые лучи, пройдя через оптические среды глаза, фокусируются не на сетчатке, то развиваются аномалии зрения:

  • Если впереди нее - близорукость;
  • если позади - дальнозоркость.

Для выравнивания близорукости используют двояковогнутые, а дальнозоркости - двояковыпуклые стекла очков.

Как уже отмечалось, в сетчатке расположены палочки и колбочки. При попадании на них свет вызывает раздражение: возникают сложные фотохимические, электрические, ионные и ферментативные процессы, которые обусловливают нервное возбуждение - сигнал. Он поступает по зрительному нерву в подкорковые (четверохолмие, зрительный бугор и др.) центры зрения. Потом направляется в кору затылочных долей мозга, где воспринимается в виде зрительного ощущения.

Весь комплекс нервной системы, включающий рецепторы света, зрительные нервы, центры зрения в головном мозге, составляет зрительный анализатор.

Строение вспомогательного аппарата глаза


Помимо глазного яблока к глазу относится и вспомогательный аппарат. Он состоит из век, шести мышц, двигающих глазное яблоко. Заднюю поверхность век покрывает оболочка - конъюнктива, которая частично переходит на глазное яблоко. Кроме того, к вспомогательным органам глаза относится слезный аппарат. Он состоит из слезной железы, слезных канальцев, мешка и носослезного протока.

Слезная железа выделяет секрет - слезы, содержащие лизоцим, губительно действующий на микроорганизмы. Она расположена в ямке лобной кости. Ее 5-12 канальцев открываются в щель между конъюнктивой и глазным яблоком в наружном углу глаза. Увлажнив поверхность глазного яблока, слезы оттекают к внутреннему углу глаза (к носу). Здесь они собираются в отверстия слезных канальцев, по которым попадают в слезный мешок, также расположенный у внутреннего угла глаза.

Из мешка по носослезному протоку слезы направляются в полость носа, под нижнюю раковину (поэтому порой можно заметить, как во время плача слезы текут из носа).

Гигиена зрения

Знание путей оттока слез из мест образования - слезных желез - позволяет правильно выполнять такой гигиенический навык, как - «протирание» глаз. При этом движение рук с чистой салфеткой (желательно стерильной) нужно направлять от наружного угла глаза к внутреннему, «протирать глаза в сторону носа», в сторону естественного тока слез, а не против него, способствуя, таким образом, удалению инородного тела (пыли), попавшего на поверхность глазного яблока.

Орган зрения нужно оберегать от попаданий инородных тел, повреждений. При работе, где образуются частицы, осколки материалов, стружка, следует пользоваться защитными очками.

При ухудшении зрения не медлить и обращаться к врачу-окулисту, выполнять его рекомендации, чтобы избежать дальнейшего развития болезни. Интенсивность освещения рабочего места должна зависеть от вида выполняемой работы: чем более тонкие движения выполняются, тем интенсивнее должно быть освещение. Оно не должно быть ни ярким, ни слабым, а ровно таким, которое требует наименьшего напряжения зрения и способствует эффективной работе.

Как поддерживать остроту зрения

Разработаны нормативы освещения в зависимости от назначения помещения, от рода деятельности. Количество света определяют с помощью специального прибора - люксметра. Контроль правильности освещения осуществляет медико-санитарная служба и администрация учреждений и предприятий.

Следует помнить, что особенно способствует ухудшению остроты зрения яркий свет. Поэтому нужно избегать смотреть без светозащитных очков в сторону источников яркого света как искусственных, так и естественных.

Для предотвращения ухудшения зрения в связи с высокой нагрузкой на глаза нужно выполнять определенные правила:

  • При чтении и письме необходимо равномерное достаточное освещение, от которого не развивается утомление;
  • расстояние от глаз до предмета чтения, письма или мелких предметов, с которыми вы заняты, должно быть около 30-35см;
  • предметы, с которыми вы работаете, нужно размещать удобно для глаз;
  • телепередачи смотреть не ближе 1,5 метра от экрана. При этом обязательно нужно подсвечивание помещения за счет скрытого источника света.

Немаловажное значение для поддержания нормального зрения имеет витаминизированное питание вообще и особенно витамин А, которого много в животных продуктах, в моркови, тыкве.

Размеренный образ жизни, включающий в себя правильное чередование режима труда и отдыха, питания, исключающий вредные привычки, в том числе курение и употребление алкогольных напитков, в немалой степени способствует сохранению зрения и здоровья вообще.

Гигиенические требования к сохранению органа зрения настолько обширны и разнообразны, что приведенными выше нельзя ограничиваться. Они могут меняться в зависимости от трудовой деятельности, их следует выяснить у врача и выполнять.

Зрительное восприятие – многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза и возбуждения фоторецепторов и заканчивающийся принятием высшими отделами зрительной сенсорной системы решения о наличии в поле зрения того или иного зрительного образа. В связи с необходимостью наводить глаза на рассматриваемый объект, вращая их, природа создала у большинства видов животных шарообразную форму глазного яблока. На пути к светочувствительной оболочке глаза – сетчатке – лучи света проходят через несколько светопроводящих сред – роговицу, влагу передней камеры, хрусталик и стекловидное тело, назначение которых преломлять их и фокусировать в области расположения рецепторов на сетчатке, обеспечивать четкое изображение на ней.

Камера глаза имеет 3 оболочки. Наружная непрозрачная оболочка – склера, переходит спереди в прозрачную роговицу. Средняя сосудистая оболочка в передней части глаза образует ресничное тело и радужную оболочку, обусловливающую цвет глаз. В середине радужки имеется отверстие – зрачок, регулирующий количество пропускаемых световых лучей. Диаметр зрачка регулируется зрачковым рефлексом, центр которого находится в среднем мозге. Внутренняя сетчатая оболочка (сетчатка) содержит фоторецепторы глаза (палочки и колбочки) и служит для преобразования световой энергии в нервное возбуждение.

Основными преломляющими средами глаза человека являются роговица (обладает наибольшей преломляющей силой) и хрусталик, который представляет собой двояковыпуклую линзу. В глазу преломление света проходит по общим законам физики. Лучи, идущие из бесконечности через центр роговицы и хрусталика (т.е. через главную оптическую ось глаза) перпендикулярно к их поверхности, не испытывают преломления. Все остальные лучи преломляются и сходятся внутри камеры глаза в одной точке – фокусе . Такой ход лучей обеспечивает четкое изображение на сетчатке, причем оно получается уменьшенным и обратным (рис. 26).

Рис. 26. Ход лучей и построение изображений в редуцированном глазу:

АВ – предмет; аb – его изображение; Dd – главная оптическая ось

Аккомодация. Для ясного видения предмета необходимо, чтобы лучи от его точек попадали на поверхность сетчатки, т.е. были здесь сфокусированы. Когда человек смотрит на далекие предметы, их изображение сфокусировано на сетчатке и они видны ясно. При этом близкие предметы видны неясно, их изображение на сетчатке расплывчато, т.к. лучи от них собираются за сетчаткой (рис. 27). Видеть одновременно одинаково ясно предметы, удаленные от глаза на разное расстояние, невозможно.

Рис. 27.Ход лучей от близкой и далекой точки:

От далекой точки А (параллельные лучи) изображение а получается на сетчатке при ненапряженном аккомодационном аппарате; при этом от близкой точки В изображениев образуется за сетчаткой

Приспособление глаза к четкому видению различно удаленных предметов называется аккомодацией. Этот процесс осуществляется за счет изменения кривизны хрусталика и, следовательно, его преломляющей способности. При рассматривании близких предметов хрусталик делается более выпуклым, благодаря чему лучи, расходящиеся от светящейся точки, сходятся на сетчатке. При рассмотрении далеких предметов хрусталик становится менее выпуклым, как бы растягиваясь (рис. 28). Механизм аккомодации сводится к сокращению ресничных мышц, которые изменяют выпуклость хрусталика .

Существует две главные аномалии преломления лучей (рефракции) в глазу: близорукость и дальнозоркость. Они обусловлены, как правило, ненормальной длиной глазного яблока. В норме продольная ось глаза соответствует преломляющей силе глаза. Однако у 35 % людей имеются нарушения этого соответствия.

В случае врожденной близорукости продольная ось глаза больше нормы и фокусировка лучей происходит перед сетчаткой, а изображение на сетчатке становится расплывчатым (рис. 29). Приобретенная близорукость связана с увеличением кривизны хрусталика, возникающая, в основном, при нарушении гигиены зрения. В дальнозорком глазу, наоборот, продольная ось глаза меньше нормы и фокус располагается за сетчаткой. В результате изображение на сетчатке тоже расплывчато. Приобретенная дальнозоркость возникает у пожилых людей из-за уменьшения выпуклости хрусталика и ухудшения аккомодации. В связи с возникновением старческой дальнозоркости ближняя точка ясного видения с возрастом отодвигается (от 7 см в 7 – 10 лет до 75 см в 60 лет и более).

Восприятие объектов окружающей среды человеком происходит путем проекции на . Сюда световые лучи попадают, проходя через сложную оптическую систему.

Строение

В зависимости от функций, которые выполняет отдел глаза, утверждает oбaглазa.рy, различают светопроводящую и световоспринимающую части.

Светопроводящий отдел

К светопроводящему отделу относят органы зрения прозрачной структуры:

  • влага передней ;

Главная функция их, по мнению оbаglaza.ru, пропускать свет и преломлять лучи для проекции на сетчатку.

Световоспринимающий отдел

Световоспринимающий отдел глаза представлен сетчаткой. Проходя сложный путь преломления в роговице и хрусталике, лучи света фокусируются на задней части в перевернутом виде. В сетчатке, благодаря наличию рецепторов происходит первичный анализ видимых объектов (различие цветовой гаммы, световостриятие).

Трансформация лучей

Рефракция - это процесс прохождения света оптической системой глаза, напоминает оbaglаzа ru. В основу понятия заложены принципы законов оптики. Оптическая наука обосновывает законы прохождения лучей света через разнообразные среды.

1. Оптические оси

  • Центральная - прямая линия (основная оптическая ось глаза), проходящая через центр всех преломляющих оптических поверхностей.
  • Зрительная - лучи света, которые попадают параллельно основной оси преломляются и локализуются в центральном фокусе.

2. Фокус

Основной передний фокус — точка оптической системы где, после преломления, локализируются световые потоки центральной и зрительной оси и образуют изображение удаленных объектов.

Дополнительные фокусы - собирает лучи от объектов, размещенных на конечном расстоянии. Расположены они дальше основного переднего фокуса, так как, чтобы сфокусироваться лучам, нужен больший угол преломления.

Методы исследование

Для измерения функциональности оптической системы глаз в первую очередь, по мнению сайт, нужно определить радиус кривизны всех структурных преломляющих поверхностей (передних и задних сторон хрусталики и роговицы). Немало важными показателями являются также глубина передней камеры, толщина роговой оболочки и хрусталика, длинна и угол преломления осей зрения.

Определить все эти величины и показатели (кроме преломления) можно с помощью:

  • Ультразвукового исследования;
  • Оптических методов;
  • Рентгенограмм.

Коррекция

Измерение длинны осей широко используется в области оптической системы глаз (микрохирургия, коррекция лазером). С помощью современных достижений медицины, подсказывает обaглaза.ру, можно устранить ряд врожденных и приобретенных патологий оптической системы (имплантация хрусталика, манипуляции на роговице глаз и её протезирование и прочее).

Согласно научным исследованиям ученых, дети в младенчестве обладают слабовыраженной рефракцией. Зрение у малышей первых лет жизни характеризуется постепенно трансформируется в показатели нормального (эмметропия) или (миопию).

Глазное яблоко растет до 15 летнего возраста (интенсивно до 3 лет) из-за чего рефракция постоянно увеличивается. С возрастом увеличивается длина основной оптической оси, достигая к 7 лет 22 мм (95% оси здорового глаза взрослого человека).

, хрусталик и стекловидное тело . Их совокупность называется диоптрическим аппаратом . В нормальных условиях происходит рефракция (преломление) лучей света от зрительной мишени роговицей и хрусталиком, гак что лучи фокусируются на сетчатке . Преломляющая сила роговицы (основного рефракционного элемента глаза) равна 43 диоптриям . Выпуклость хрусталика может изменяться, и его преломляющая сила варьируется между 13 и 26 диоптриями. Благодаря этому хрусталик обеспечивает аккомодацию глазного яблока к объектам, находящимся на близком или далеком расстоянии. Когда, например, лучи света от удаленного объекта входят в нормальный глаз (с расслабленной цилиарной мышцей), мишень оказывается на сетчатке в фокусе. Если же глаз направлен па ближний объект, они фокусируются позади сетчатки (т.е. изображение на ней расплывается), пока не произойдет аккомодация. Цилиарная мышца сокращается, ослабляя натяжение волокон пояска; кривизна хрусталика увеличивается, и в результате изображение фокусируется па сетчатке.

Роговица и хрусталик вместе составляют выпуклую линзу. Лучи света от объекта проходят через узловую точку линзы и образуют па сетчатке перевернутое изображение, как в фотоаппарате. Сетчатку можно сравнить с фотопленкой, поскольку обе они фиксируют зрительные изображения. Однако сетчатка устроена гораздо сложнее. Она обрабатывает непрерывную последовательность изображений, а также посылает в мозг сообщения о перемещениях зрительных объектов, угрожающих признаках, периодической смене света и темноты и другие зрительные данные о внешней среде.

Хотя оптическая ось человеческого глаза проходит через узловую точку хрусталика и точку сетчатки между центральной ямкой и диском зрительного нерва ( рис. 35.2), глазодвигательная система ориентирует глазное яблоко на участок объекта, называемый точкой фиксации. От этой точки луч света идет через узловую точку и фокусируется в центральной ямке; таким образом, он проходит вдоль зрительной оси. Лучи от остальных участков объекта фокусируются в области сетчатки вокруг центральной ямки ( рис. 35.5).

Фокусирование лучей на сетчатке зависит не только от хрусталика, но и от радужки . Радужка выполняет роль диафрагмы фотоаппарата и регулирует не только количество света, поступающего в глаз, но, что еще важнее, глубину зрительного поля и сферическую аберрацию хрусталика. При уменьшении диаметра зрачка глубина зрительного поля возрастает и лучи света направляются через центральную часть зрачка, где сферическая аберрация минимальна. Изменения диаметра зрачка происходят автоматически (т.е. рефлекторно) при настройке (аккомодации) глаза на рассматривание близких предметов. Следовательно, во время чтения или другой деятельности глаз, связанной с различением мелких объектов, качество изображения улучшается с помощью оптической системы глаза.

На качество изображения влияет еще один фактор - рассеивание света. Оно минимизируется путем ограничения пучка света, а также его поглощения пигментом сосудистой оболочки и пигментным слоем сетчатки. В этом отношении глаз снова напоминает фотоаппарат. Там рассеивание света тоже предотвращается посредством ограничения пучка лучей и его поглощения черной краской, покрывающей внутреннюю поверхность камеры.

Фокусирование изображения нарушается, если размер зрачка не соответствует преломляющей силе диоптрического аппарата. При миопии (близорукости) изображения удаленных объектов фокусируются перед сетчаткой, не доходя до нее ( рис. 35.6). Дефект корректируется с помощью вогнутых линз. И наоборот, при гиперметропии (дальнозоркости) изображения далеких предметов фокусируются позади сетчатки. Чтобы устранить проблему, нужны выпуклые линзы ( рис. 35.6). Правда, изображение можно временно сфокусировать за счет аккомодации, но при этом утомляются цилиарные мышцы и глаза устают. При астигматизме возникает асимметрия между радиусами кривизны поверхностей роговицы или хрусталика (а иногда сетчатки) в разных плоскостях. Для коррекции используются линзы со специально подобранными радиусами кривизны.

Упругость хрусталика с возрастом постепенно снижается. Падает эффективность его аккомодации при рассматривании близких предметов ( пресбиопия). В молодом возрасте преломляющая сила хрусталика может меняться в широком диапазоне, вплоть до 14 диоптрий. К 40 годам этот диапазон уменьшается вдвое, а после 50 лет - до 2 диоптрий и ниже. Пресбиопия корректируется выпуклыми линзами.

Понравилась статья? Поделитесь ей