Контакты

Факторы, влияющие на легочный объем в фазу вдоха. Растяжимость легких (легочной ткани)

В положении спокойного выдоха, при полном расслаблении, устанавливается равновесие двух противоположно направленных сил тяги: эластической тяги легких, эластической тяги грудной клетки. Их алгебраическая сумма равна нулю.

Объем воздуха, находящегося при этом в легких, именуется функциональной остаточной емкостью. Давление в альвеолах нулевое, т. е. атмосферное. Движение воздуха по бронхам прекращается. Направленность эластических сил проявляется после вскрытия плевральной полости: легкое сжимается, грудная клетка расширяется. Местом «сцепления» этих сил являются париетальный и висцеральный листки плевры. Прочность этого сцепления огромна - она может выдержать давление до 90 мм рт. ст. Для того чтобы началось дыхание (перемещение воздуха по бронхиальному дереву), необходимо нарушить равновесие эластических сил, что достигается путем приложения дополнительной силы - силы дыхательной мускулатуры (при самостоятельном дыхании) или силы аппарата (при принудительном дыхании). В последнем случае место приложения силы может быть двояким:

  • снаружи (сжимание или расширение грудной клетки, например дыхание в респираторе)
  • изнутри (повышение или снижение альвеолярного давления, например управляемое дыхание наркозным аппаратом).

Для обеспечения необходимого объема альвеолярной вентиляции требуется затратить какую-то энергию на преодоление сил, противодействующих дыханию. Это противодействие складывается главным образом из:

  • эластического (преимущественно сопротивления легких)
  • неэластического (в основном сопротивление бронхов воздушному потоку) сопротивления.

Сопротивление брюшной стенки, суставных поверхностей скелета грудной клетки и сопротивление тканей на растяжение незначительно и потому не учитывается. Эластическое сопротивление грудной клетки в обычных условиях является способствующим фактором и потому тоже не оценивается в данном сообщении.

Эластическое сопротивление

Эластика грудной клетки связана с характерным строением и расположением ребер, грудины и позвоночника. Хрящевая фиксация с грудиной, пластинчатое строение и форма полукруга ребер придают грудной клетке упругость или эластичность. Эластическая тяга груди направлена на расширение объема грудной полости. Упругие свойства легочной ткани связаны с наличием в ней специальных эластических волокон, стремящихся сжать легочную ткань.

Суть дыхания следующая — на вдохе мышечные усилия растягивают грудную клетку, а вместе с ней и легочную ткань. Выдох осуществляется под влиянием эластической тяги легочной ткани и смещения органов брюшной полости, объем грудной клетки возрастает под действием эластической тяги груди. При этом функциональная остаточная емкость увеличивается, а альвеолярный газообмен ухудшается.

Эластические свойства легких определяются изменением альвеолярного давления на изменение наполнения легочной ткани на единицу объема. Эластичность легких выражается в сантиметрах водяного столба на 1 л. У здорового человека эластичность легких составляет 0,2 л/см водяного столба. Это означает, что при изменении наполнения легких на 1 л внутрилегочное давление изменяется на 0,2 см водяного столба. На вдохе это давление будет возрастать, а на выдохе - снижаться.

Сопротивление эластической тяги легких прямо пропорционально наполнению легких и не зависит от скорости потока воздуха.

Работа по преодолению эластической тяги возрастает в виде квадрата прироста объема и потому она выше при глубоком дыхании и ниже при поверхностном.

На практике наибольшее распространение получил показатель растяжимости легких (комплайенс).

Растяжимость легочной ткани является величиной, обратной понятию эластичности, и определяется изменением воздухонаполнения легких под влиянием изменения альвеолярного давления на единицу давления. У здоровых людей эта величина составляет примерно 0,16 л/см водяного столба с размахом от 0,11 до 0,33 л/см водяного столба.

Растяжимость ткани легкого в различных отделах неодинакова. Так, корень легкого имеет незначительную растяжимость. В зоне разветвления бронхов, где уже имеется паренхиматозная ткань, растяжимость оказывается средней, а сама легочная паренхима (по периферии легкого) обладает наибольшей растяжимостью. Ткань в нижних отделах обладает большей растяжимостью, чем в области верхушек. Это положение удачно сочетается с тем фактом, что нижние отделы груди наиболее значительно меняют свой объем при дыхании.

Показатель растяжимости легочной ткани подвержен большим изменениям в условиях патологии. Растяжимость уменьшается, если легочная ткань становится более плотной, например:

  • при легочном застое вследствие сердечно-сосудистой недостаточности
  • при фиброзе легких.

Это означает, что на ту же величину сдвига давления происходит меньшее растяжение легочной ткани, т. е. меньшее изменение объема. Растяжимость легких иногда снижается до 0,7-0,19 л/см водяного столба. Тогда у таких больных наблюдается значительная одышка даже в покое. Снижение растяжимости легочной ткани наблюдается также под воздействием рентгенотерапии, из-за развивающегося склеротического процесса в легочной ткани. Снижение растяжимости в этом случае является ранним и выраженным признаком пневмосклероза.

В случаях развития атрофических процессов в легочной ткани (например, при эмфиземе легких), сопровождающихся утратой эластичности, растяжимость будет повышена и может достигнуть 0,78-2,52 л/см водяного столба.

Бронхиальное сопротивление

Величина бронхиального сопротивления зависит от:

  • скорости потока воздуха по бронхиальному дереву;
  • анатомического состояния бронхов;
  • характера потока воздуха (ламинарного или турбулентного).

При ламинарном потоке сопротивление зависит от вязкости, а при турбулентном - от плотности газа. Турбулентные потоки обычно развиваются в местах ветвления бронхов и на местах анатомических изменений стенок воздуховодов. В норме же на преодоление бронхиального сопротивления расходуется около 30-35% всей работы, но при эмфиземе и бронхитах этот расход резко увеличивается и достигает 60-70% всей затраченной работы.

Сопротивление воздушному потоку со стороны бронхиального дерева у здоровых людей остается при обычном объеме дыхания постоянным и составляет в среднем 1,7 см л/сек Н2О при потоке воздушной струи 0,5 л/сек. Согласно закону Пуазейля, сопротивление будет меняться прямо пропорционально квадрату скорости потока и IV степени радиуса просвета воздухоносной трубки и обратно пропорционально длине этой трубки. Таким образом, при анестезировании больных с нарушенной бронхиальной проходимостью (бронхит, бронхиальная астма, эмфизема) для обеспечения наиболее полного выдоха дыхание должно быть редким, чтобы хватило времени для полноценного выдоха, или следует применять отрицательное давление на выдохе в целях обеспечения надежного вымывания углекислоты из альвеол.

Повышенное сопротивление потоку газовой смеси будет также наблюдаться при интубации трубкой небольшого диаметра (по отношению к просвету трахеи). Несоответствие размера трубки на два номера (по английской номенклатуре) приведет к повышению сопротивления примерно в 7 раз. Сопротивление возрастает с увеличением длины трубки. Поэтому наращивание ее (иногда наблюдаемое при на лице) должно производиться со строгим учетом возрастающего при этом сопротивления потоку газов и увеличения объема анестезиологического вредного пространства.

Во всех сомнительных случаях вопрос должен решаться в пользу укорочения трубки и увеличения ее диаметра.

Работа дыхания

Работа дыхания определяется энергией, затраченной на преодоление эластических и неэластических сил, противодействующих вентиляции, т. е. той энергии, которая заставляет дыхательный аппарат совершать дыхательные экскурсии. Установлено, что при спокойном дыхании главные энергетические затраты уходят на преодоление сопротивления со стороны легочной ткани и совсем небольшая энергия расходуется на преодоление сопротивлений со стороны грудной клетки и брюшной стенки.

На долю эластического сопротивления легких приходится около 65%, а на долю сопротивления бронхов и тканей -35%.

Работа дыхания, выраженная в миллилитрах кислорода на 1 л вентиляции, для здорового человека составляет 0,5 л/мин или 2,5 мл при МОД, равном 5000 мл.

У больных с пониженной растяжимостью легочной ткани (жесткое легкое) и высоким бронхиальным сопротивлением работа по обеспечению вентиляции может оказаться очень высокой. При этом нередко выдох становится активным. Такого рода изменения аппарата дыхания имеют не только теоретическое значение, например при обезболивании больных с эмфиземой легких, у которых имеется повышенная растяжимость легочной ткани (атрофия легких) и увеличенное бронхиальное сопротивление наряду с фиксированной грудной клеткой. Поэтому в обычных условиях выдох становится активным и усиливается за счет сокращения мышц живота. Если больному будет дан глубокий наркоз или будет произведена , то этот компенсаторный механизм будет нарушен. Снижение глубины вдоха приведет к опасной задержке углекислоты. Поэтому у больных с эмфиземой легких при лапаротомиях вентиляция должна быть принудительной. В послеоперационном периоде эти больные должны находиться под особенно строгим надзором и в случае необходимости их переводят на принудительное дыхание через трахеотомическую трубку с манжеткой (с помощью различного рода спиропульсаторов). Поскольку время выдоха у этих больных затянуто (из-за снижения эластичности и затруднения воздушного потока по бронхиальному дереву), при проведении принудительного дыхания для обеспечения хорошей вентиляции альвеол желательно создать отрицательное давление аа выдохе. Однако отрицательное давление не должно быть чрезмерным, иначе оно может вызвать спадение стенок бронхов и блокирование значительного объема газа в альвеолах. В этом случае результат будет обратным - альвеолярная вентиляция снизится.

Своеобразные изменения наблюдаются при обезболивании больных с сердечным застоем легких, у которых показатель растяжимости, определенный до наркоза, оказывается сниженным (жесткое легкое). Благодаря проведению управляемой вентиляции легкое у них становится более «мягким» оттого, что часть застойной крови отжимается в большой круг кровообращения. Растяжимость легких увеличивается. И тогда при том же давлении легкие расправляются на больший объем. Это обстоятельство следует иметь в виду в случаях ведения наркоза с помощью спиронульсатора, так как с увеличением растяжимости возрастает объем легочной вентиляции, что в ряде случаев может отразиться на глубине наркоза и гемеостазе кислотно-щелочного баланса.

Вентиляция и механика дыхания

Соотношение между глубиной вдоха и частотой дыхания определяется механическими свойствами аппарата дыхания. Эти соотношения устанавливаются так, чтобы работа, затрачиваемая на обеспечение требуемой альвеолярной вентиляции, была минимальной.

При пониженной растяжимости легких (жесткое легкое) поверхностное и частое дыхание будет наиболее экономичным (так как скорость потока воздуха не вызывает большого сопротивления), а при повышенном бронхиальном сопротивлении наименьшее количество энергии расходуется при медленных потоках воздуха (редкое и глубокое дыхание). Этим и объясняется, почему больные с пониженным показателем растяжимости легочной ткани дышат часто и поверхностно, а больные с повышенным бронхиальным сопротивлением - редко и глубоко.

Аналогичная взаимозависимость наблюдается у здорового человека. Глубокое дыхание бывает редким, а поверхностное - частым. Эти взаимоотношения устанавливаются под контролем центральной нервной системы.

Рефлекторная иннервация определяет оптимальные соотношения между частотой дыхания, глубиной вдоха и скоростью потока дыхательного воздуха при формировании нужного уровня альвеолярной вентиляции, при которых требуемая альвеолярная вентиляция обеспечивается при возможно минимальной работе дыхания. Так, у больных с ригидными легкими (растяжимость снижена) наилучшее соотношение между частотой и глубиной вдоха наблюдается при частом дыхании (энергия экономится за счет меньшего растягивания легочной ткани). Наоборот, у больных с повышенным сопротивлением со стороны бронхиального дерева (бронхиальная астма) лучшее соотношение наблюдается при глубоком редком дыхании. Наилучшее состояние у здоровых людей в условиях покоя наблюдается при частоте дыхания 15 в минуту и глубине 500 мл. Работа дыхания будет составлять около 0,1-0,6 гм/мин.

Статью подготовил и отредактировал: врач-хирург
4. Изменение объема легких во время вдоха и выдоха. Функция внутриплеврального давления. Плевральное пространство. Пневмоторакс.
5. Фазы дыхания. Объем легкого (легких). Частота дыхания. Глубина дыхания. Легочные объемы воздуха. Дыхательный объем. Резервный, остаточный объем. Емкость легких.

7. Альвеолы. Сурфактант. Поверхностное натяжение слоя жидкости в альвеолах. Закон Лапласа.
8. Сопротивление дыхательных путей. Сопротивление легких. Воздушный поток. Ламинарный поток. Турбулентный поток.
9. Зависимость «поток-объем» в легких. Давление в дыхательных путях при выдохе.
10. Работа дыхательных мышц в течение дыхательного цикла. Работа дыхательных мышц при глубоком дыхании.

При вдохе увеличению объема грудной полости препятствуют эластическая тяга легких , движение ригидной грудной клетки, органы брюшной полости и, наконец, сопротивление дыхательных путей движению воздуха в направлении альвеол. Первый фактор, а именно эластическая тяга легких, в наибольшей степени препятствует увеличению объема легких во время инспирации.

Растяжимость легких (легочной ткани).

В нормальных физиологических условиях глубина вдоха может быть ограничена только физическими свойствами легочной ткани и грудной клетки. Сопротивление раздуванию легких, которое возникает при поступлении в них воздуха, обусловлено растяжимостью их соединительной ткани и сопротивлением дыхательных путей потоку воздуха. Мерой эластических свойств легочной ткани является растяжимость легких, которая характеризует степень увеличения объема легких в зависимости от степени уменьшения внутриплеврального давления:

где С - растяжимость (англ. - compliance), dV - изменение легочного объема (мл), а dР - изменение внутриплеврального давления (см водн. ст.). Растяжимость характеризует количественно степень изменения объема легких у человека в зависимости от степени изменения при вдохе внутриплеврального давления. Грудная клетка также обладает эластическими свойствами, поэтому растяжимость тканей легких и тканей грудной клетки обусловливает эластические свойства всего аппарата внешнего дыхания человека.

Рис. 10.6. Кривая растяжимости (комплайенса) легких человека . Кривые справа показывают изменение дыхательного объема легких и общей емкости легких, возникающие при изменениях внутриплеврального давления без учета влияния тканей грудной клетки. Легкие полностью не спадаются, если внутриплевральное давление становится равным нулю (точка 1). Кривые комплайенса совпадают в точке 2 при большом объеме в легких, когда легочная ткань достигает предела эластического растяжения. Вд - внутриплевральное давление. Слева - схема регистрации изменений внугриплеврального давления и дыхательного объема легких.

На рис. 10.6 показано изменение легочного объема , которое возникает при изменениях внутриплеврального давления. Восходящая и нисходящая линии характеризуют раздувание и спадение легких соответственно. Фрагмент рис. 10.6 слева демонстрирует, каким образом могут быть измерены значения легочного объема и внутриплеврального давления, вынесенные на график. Объем легких не уменьшается до нуля, когда величина внутриплеврального давления становится равной нулю. Раздувание легких с уровня их минимального объема требует усилия для того, чтобы раскрыть спавшиеся стенки альвеол в силу значительного поверхностного натяжения жидкости, покрывающей как их поверхность, так и поверхность дыхательных путей. Поэтому кривые, полученные при раздувании и спадении легких, не совпадают друг с другом, и их нелинейное изменение называется гистерезисом .

Легкие при спокойном дыхании никогда не спадаются полностью, поэтому кривая спадения описывает изменения легочного объема при изменении величины внутриплеврального давления в диапазоне от -2 см. водн. ст. до -10 см водн. ст. В норме легкие человека имеют высокую растяжимость (200 мл/см водн. ст.). Эластичность легочной ткани обусловлена свойствами соединительных волокон легочной ткани. С возрастом эти волокна, как правило, снижают тонус, что сопровождается увеличением растяжимости и уменьшением эластической тяги легких. При повреждении легочной ткани или при избыточном развитии в ней соединительной ткани (фиброз) легкие становятся плохо растяжимыми, величина их растяжимости снижается, что затрудняет выполнение вдоха и требует значительно большего усилия дыхательных мышц, чем в норме.

Легочная растяжимость обусловлена не только эластичностью легочной ткани, но и поверхностным натяжением слоя жидкости, покрывающей альвеолы. По сравнению с эластической тягой легких, влияние на величину легочной растяжимости во время дыхания фактора поверхностного натяжения слоя жидкости, покрывающей альвеолы, имеет более сложную природу.

Основной (хотя и не единственной) функцией легких является обеспечение нормального газообмена. Внешнее дыхание - это процесс газообмена между атмосферным воздухом и кровью в легочных капиллярах, в результате которого происходит артериализация состава крови: повышается давление кислорода и снижается давление СО2. Интенсивность газообмена в первую очередь определяется тремя патофизиологическими механизмами (легочной вентиляцией, легочным кровотоком, диффузией газов через альвеолярно-капиллярную мембрану), которые обеспечиваются системой внешнего дыхания.

Легочная вентиляция

Легочная вентиляция определяется следующими факторами (А.П. Зильбер):

  1. механическим аппаратом вентиляции, который, в первую очередь, зависит от активности дыхательных мышц, их нервной регуляции и подвижности стенок грудной клетки;
  2. эластичностью и растяжимостью легочной ткани и грудной клетки;
  3. проходимостью воздухоносных путей;
  4. внутрилегочным распределением воздуха и его соответствием кровотоку в различных отделах легкого.

При нарушениях одного или нескольких из приведенных выше факторов могут развиваться клинически значимые вентиляционные нарушения, проявляющиеся несколькими типами вентиляционной дыхательной недостаточности.

Из дыхательных мышц наиболее значимая роль принадлежит диафрагме. Ее активное сокращение приводит к уменьшению внутригрудного и внутриплеврального давления, которое становится ниже атмосферного давления, в результате чего и происходит вдох.

Вдох осуществляется за счет активного сокращения дыхательных мышц (диафрагмы), а выдох происходит в основном за счет эластической тяги самого легкого и грудной стенки, создающей экспираторный градиент давления, в физиологических условиях достаточный для выведения воздуха через воздухоносные пути.

При необходимости увеличения объема вентиляции происходит сокращение наружных межреберных, лестничных и грудинно-ключично-сосцевидных мышц (дополнительные инспираторные мышцы), также приводящее к увеличению объема грудной клетки и снижению внутригрудного давления, что способствует вдоху. Дополнительными экспираторными мышцами считают мышцы передней брюшной стенки (наружные и внутренние косые, прямые и поперечные).

Эластичность легочной ткани и грудной клетки

Эластичность легких. Движение потока воздуха во время вдоха (внутрь легких) и выдоха (из легких) определяется градиентом давления между атмосферой и альвеолами так называемым трансторакальным давлением (Р тр / т):

Ртр/т = Р альв - Р атм где Р алв, - альвеолярное, а Р атм - атмосферное давление.

Во время вдоха Р альв и Р тр/т становятся отрицательными, во время выдоха - положительными. В конце вдоха и в конце выдоха, когда воздух по воздухоносным путям не движется, а голосовая щель открыта, Р альв равно Р атм.

Уровень Р альв в свою очередь зависит от величины внутриплеврального давления (Р пл) и так называемого давления эластической отдачи легкого (Р эл):

Давление эластической отдачи - это давление, создаваемое эластической паренхимой легкого и направленное внутрь легкого. Чем выше эластичность легочной ткани, тем более значительным должно быть снижение внутриплеврального давления, чтобы произошло расправление легкого во время вдоха, и, следовательно, тем большей должна быть активная работа инспираторных дыхательных мышц. Высокая эластичность способствует более быстрому спадению легкого во время выдоха.

Еще один важный показатель, обратный эластичности легочной ткани - апатическая растяжимость легкого - представляет собой меру поддатливости легкого при его расправлении. На растяжимость (и величину давления эластической отдачи) легкого влияет множество факторов:

  1. Объем легкого: при малом объеме (например, в начале вдоха) легкое более податливо. При больших объемах (например, на высоте максимального вдоха) растяжимость легкого резко уменьшается и становится равной нулю.
  2. Содержание эластических структур (эластина и коллагена) в легочной ткани. Эмфизема легких, для которой, как известно, характерно снижение эластичности легочной ткани, сопровождается увеличением растяжимости легкого (снижением давления эластической отдачи).
  3. Утолщение альвеолярных стенок вследствие их воспалительного (пневмония) или гемодинамического (застой крови в легком) отека, а также фиброзирование ткани легкого существенно уменьшают растяжимость (податливость) легкого.
  4. Силы поверхностного натяжения в альвеолах. Они возникают па поверхности раздела газа и жидкости, которая изнутри тонкой пленкой выстилает альвеолы, и стремятся уменьшить площадь этой поверхности, создавая внутри альвеол положительное давление. Таким образом, силы поверхностного натяжения вместе с эластическими структурами легких обеспечивают эффективное спадение альвеол во время выдоха и в то же время препятствуют расправлению (растяжению) легкого во время вдоха.

Сурфактант, выстилающий внутреннюю поверхность альвеолы - это вещество, уменьшающее силу поверхностного натяжения.

Активность сурфактанта тем выше, чем он плотнее. Поэтому па вдохе, когда плотность и, соответственно, активность сурфактанта уменьшается, силы поверхностного натяжения (т.е. силы, стремящиеся сократить поверхность альвеол) увеличиваются, что способствует последующему спадению легочной ткани во время выдоха. В конце выдоха плотность и активность сурфактанта возрастают, а силы поверхностного натяжения уменьшаются.

Таким образом, после окончания выдоха, когда активность сурфактанта максимальна, а силы поверхностного натяжения, препятствующие расправлению альвеол, минимальны, дли последующего расправления альвеол на вдохе требуются меньшие затраты энергии.

Важнейшими физиологическими функциями сурфактанта являются:

  • увеличение растяжимости легкого благодаря снижению сил поверхностного натяжения;
  • уменьшение вероятности спадения (коллапса) альвеол во время выдоха, поскольку при малых объемах легкого (в конце выдоха) его активность максимальна, а силы поверхностного натяжения минимальны;
  • предотвращение перераспределения воздуха из более мелких в более крупные альвеолы (согласно закону Лапласа).

При заболеваниях, сопровождающихся дефицитом сурфактанта, ригидность легких увеличивается, альвеолы спадаются (развиваются ателектазы), возникает дыхательная недостаточность.

Пластическая отдача грудной стенки

Эластические свойства грудной стенки, которые также оказывают большое влияние на характер легочной вентиляции, определяются состоянием костного скелета, межреберных мышц, мягких тканей, париетальной плевры.

При минимальных объемах грудной клетки и легких (во время максимального выдоха) и в начале вдоха эластическая отдача грудной стенки направлена кнаружи, что создает отрицательное давление и способствует расправлению легкого. По мере увеличения объема легкого во время вдоха эластическая отдача грудной стенки уменьшатся. Когда объем легкого достигает примерно 60% величины ЖЕЛ, эластическая отдача грудной стенки уменьшается до нуля, т.е. до уровня атмосферного давления. При дальнейшем увеличении объема легких эластическая отдача грудной стенки направлена кнутри, что создает положительное давление и способствует спадению легких во время последующего выдоха.

Некоторые заболевания сопровождаются повышением ригидности грудной стенки, что оказывает влияние на способность грудной клетки растягиваться (во время вдоха) и спадаться (во время выдоха). К числу таких заболеваний относятся ожирение, кифо- сколиоз, эмфизема легких, массивные шварты, фиброторакс и др.

Проходимость воздухоносных путей и мукоцилиарный клиренс

Проходимость воздухоносных путей во многом зависит от нормального дренирования трахеобронхиального секрета, что обеспечивается, прежде всего, функционированием механизма мукоцилиарного очищения (клиренса) и нормальным кашлевым рефлексом.

Защитная функция мукоцилиарного аппарата определяется адекватной и согласованной функцией мерцательного и секреторного эпителия, в результате чего тонкая пленка секрета перемещается по поверхности слизистой оболочки бронхов и инородные частицы удаляются. Перемещение бронхиального секрета происходит за счет быстрых толчков ресничек в краниальном направлении с более медленной отдачей в противоположную сторону. Частота колебаний ресничек составляет 1000-1200 в мин, что обеспечивает движение бронхиальной слизи со скоростью 0,3-1,0 см/мин в бронхах и 2-3 см/мин в трахее.

Следует также помнить, что бронхиальная слизь состоит из 2-х слоев: нижнего жидкого слоя (золя) и верхнего вязко-эластичного - геля, которого касаются верхушки ресничек. Функция реснитчатого эпителия во многом зависит от соотношения толщины юля и геля: увеличение толщины геля или уменьшение толщины золя приводят к снижению эффективности мукоцилиарного клиренса.

На уровне респираторных бронхиол и альвеол мукоцилиарного аппарата ист. Здесь очищение осуществляется с помощью кашлевого рефлекса и фагоцитарной активности клеток.

При воспалительном поражении бронхов, особенно хроническом, эпителий морфологически и функционально перестраивается, что может приводить к мукоцилиарной недостаточности (снижению защитных функций мукоцилиарного аппарата) и скоплению мокроты в просвете бронхов.

В патологических условиях проходимость воздухоносных путей зависит не только от функционирования механизма мукоцилиарного очищения, но и от наличия бронхоспазма, воспалительного отека слизистой оболочки и феномена раннего экспираторного закрытия (коллапса) мелких бронхов.

Регуляция просвета бронхов

Тонус гладкой мускулатуры бронхов определяется несколькими механизмами, связанными со стимуляцией многочисленных специфических рецепторов бронхов:

  1. Холинергические (парасимпатические) влияния происходят в результате взаимодействия нейромедиатора ацетилхолина со специфическими мускариновыми М-холинорецепторами. В результате такого взаимодействия развивается бронхоспазм.
  2. Симпатическая иннервация гладкой мускулатуры бронхов у человека выражена в малой степени, в отличие, например, от гладкой мускулатуры сосудов и сердечной мышцы. Симпатические влияния на бронхи осуществляются в основном благодаря воздействию циркулирующего адреналина на бета2-адренорецепторы, что приводит к расслаблению гладкой мускулатуры.
  3. На тонус гладкой мускулатуры влияет также т.н. «неадренергическая, нехолинергическая» нервная система (НАНХ), волокна которой проходят в составе блуждающего нерва и высвобождают несколько специфических нейромедиаторов, взаимодействующих с соответствующими рецепторами гладкой мускулатуры бронхов. Важнейшими из них являются:
    • вазоактивный интестинальный полипептид (VIP);
    • субстанция Р.

Стимуляция VIP-рецепторов приводит к выраженному расслаблению, а бета-рецепторов к сокращению гладких мышц бронхов. Считается, что нейроны НАНХ-системы оказывают наибольшее влияние па регуляцию просвета воздухоносных путей (К.К. Murray).

Кроме того, в бронхах содержится большое количество рецепторов, взаимодействующих с различными биологически активными веществами, в том числе с медиаторами воспаления - гистамином, брадикинином, лейкотриенами, простагландинами, фактором активации тромбоцитов (ФАТ), серотонином, аденозином и др.

Тонус гладкой мускулатуры бронхов регулируется несколькими нейрогуморальными механизмами:

  1. Дилатация бронхов развивается при стимуляции:
    • бета2-адренорецепторов адреналином;
    • VIР-рецепторов (системы НАНХ) вазоактивным интестинальным полипептидом.
  2. Сужение просвета бронхов возникает при стимуляции:
    • М-холинергических рецепторов ацетилхолином;
    • рецепторов к субстанции Р (системы НАНХ);
    • Альфа-адренорецепторов (например, при блокаде или снижении чувствительности бета2-адренергических рецепторов).

Внутрилегочное распределение воздуха и его соответствие кровотоку

Неравномерность вентиляции легких, существующая в норме, определяется, прежде всего, неоднородностью механических свойств легочной ткани. Наиболее активно вентилируются базальные, в меньшей степени - верхние отделы легких. Изменение эластических свойств альвеол (в частности, при эмфиземе легких) или нарушение бронхиальной проходимости значительно усугубляют неравномерность вентиляции, увеличивают физиологическое мертвое пространство и снижают эффективность вентиляции.

Диффузия газов

Процесс диффузии газов через альвеолярно-капиллярного мембрану зависит

  1. от градиента парциального давления газов по обе стороны мембраны (в альвеолярном воздухе и в легочных капиллярах);
  2. от толщины альвеолярно-капиллярной мембраны;
  3. от общей поверхности зоны диффузии в легком.

У здорового человека парциальное давление кислорода (РО2) в альвеолярном воздухе в норме составляет 100 мм рт. ст., а в венозной крови - 40 мм рт. ст. Парциальное давление СО2 (РСО2) в венозной крови составляет 46 мм рт. ст., в альвеолярном воздухе - 40 мм рт. ст. Таким образом, градиент давления по кислороду составляет 60 мм рт. ст., а по углекислому газу - всего 6 мм рт. ст. Однако скорость диффузии СО2 через альвеолярно-капиллярную мембрану примерно в 20 раз больше, чем О2. Поэтому обмен СО2 в легких происходит достаточно полно, несмотря на сравнительно низкий градиент давления между альвеолами и капиллярами.

Альвеолярно-капиллярная мембрана состоит из сурфактантного слоя, выстилающего внутреннюю поверхность альвеолы, альвеолярной мембраны, интерстициального пространства, мембраны легочного капилляра, плазмы крови и мембраны эритроцита. Повреждение каждого из этих компонентов альвеолярно-капиллярной мембраны может приводить к существенному затруднению диффузии газов. Вследствие этого при заболеваниях указанные выше значения парциальных давлений О2 и СО2 в альвеолярном воздухе и капиллярах могут существенно изменяться.

Легочный кровоток

В легких существуют две системы кровообращения: бронхиальный кровоток, относящийся к большому кругу кровообращения, и собственно легочный кровоток, или так называемый малый круг кровообращения. Между ними как при физиологических, так и при патологических условиях существуют анастомозы.

Легочный кровоток в функциональном отношении расположен между правой и левой половинами сердца. Движущей силой легочного кровотока служит градиент давления между правым желудочком и левым предсердием (в норме составляющий около 8 мм рт. ст.). В легочные капилляры по артериям поступает бедная кислородом и насыщенная углекислым газом венозная кровь. В результате диффузии газов в области альвеол происходят насыщение крови кислородом и ее очищение от углекислого газа, в результате чего от легких в левое предсердие по венам оттекает артериальная кровь. На практике эти величины могут колебаться в значительных пределах. Особенно это относится к уровню РаО2 в артериальной крови, который составляет обычно около 95 мм рт. ст.

Уровень газообмена в легких при нормальной работе дыхательных мышц, хорошей проходимости воздухоносных путей и малоизмененной эластичности легочной ткани определяется скоростью перфузии крови через легкие и состоянием альвеолярно-капиллярной мембраны, через которую под действием градиента парциального давления кислорода и углекислого газа осуществляется диффузия газов.

Вентиляционно-перфузионные отношения

Уровень газообмена в легких, помимо интенсивности легочной вентиляции и диффузии газов, определяется также величиной вентиляционно-перфузионного отношения (V/Q). В норме при концентрации кислорода но вдыхаемом воздухе 21% и нормальном атмосферном давлении отношение V/Q составляет 0,8.

При прочих равных условиях уменьшение оксигенации артериальной крови может быть обусловлено двумя причинами:

  • уменьшением легочной вентиляции при сохраненном прежнем уровне кровотока, когда V/Q
  • уменьшением кровотока при сохраненной вентиляции альвеол (V/Q > 1,0).

Ранняя диагностика респираторных нарушений при заболеваниях легких является чрезвычайно актуальной проблемой. Определение и оценка выраженности нарушений функции внешнего дыхания (ФВД) позволяет поднять диагностический процесс на более высокий уровень.

Основные методы исследования ФВД :

  • спирометрия;
  • пневмотахометрия;
  • бодиплетизмография;
  • исследование легочной диффузии;
  • измерение растяжимости легких;
  • эргоспирометрия;
  • непрямая калориметрия.

Первые два метода считаются скрининговыми и обязательными для использования во всех лечебных учреждениях. Следующие три (бодиплетизмография, исследование диффузионной способности и растяжимости легких ) позволяют оценивать такие характеристики респираторной функции, как бронхиальная проходимость, воздухонаполненность, эластические свойства, диффузионная способность и респираторная мышечная функция. Они являются более углубленными, дорогостоящими методами и доступными только в специализированных центрах. Что же касается эргоспирометрии и непрямой калориметрии , то это довольно сложные методы, которые используются в основном для научных целей.

В настоящее время в Республике Беларусь имеется возможность проведения углубленного исследования функции внешнего дыхания по методике бодиплетизмографии на аппаратуре MasterScreen (VIASYS Healthcare Gmbh, Германия) с определением параметров механики дыхания в норме и при патологии.

Механика дыхания - раздел физиологии дыхания, изучающий механические силы, под действием которых совершаются дыхательные экскурсии; сопротивление этим силам со стороны аппарата вентиляции; изменения объема легких и воздушного потока в дыхательных путях.

В акте дыхания дыхательные мышцы выполняют определенную работу, направленную на преодоление общего дыхательного сопротивления. Сопротивление дыхательных путей можно оценить посредством бодиплетизмографии , а респираторное сопротивление может быть определено с помощью техники форсированных осцилляций .

Общее дыхательное сопротивление складывается из трех составляющих: эластической, фрикционной и инерционной. Эластическая составляющая возникает в связи с упругими деформациями грудной клетки и легких, а также компрессией (декомпрессией) газов и жидкостей в легких, плевральной и брюшной полостях во время дыхания. Фрикционная составляющая отображает действие сил трения при перемещении газов и плотных тел. Инерционная составляющая - преодоление инерции анатомических образований, жидкостей и воздуха; показатель достигает значимых величин только при тахипноэ.

Таким образом, чтобы полностью описать механику дыхания, необходимо рассмотреть соотношение трех параметров - давления (Р), объема (V) и потока (F) на протяжении дыхательного цикла . Поскольку взаимосвязь трех параметров сложна как для регистрации, так и для расчетов, на практике используют соотношение парных показателей в виде индексов или описание каждого из них во времени.

При обычном (спокойном) дыхании активность инспираторных мышц необходима для преодоления сопротивления дыхательной системы. В этом случае достаточно работы диафрагмы (у мужчин) и межреберных мышц (женский тип дыхания). При физической нагрузке или патологических состояниях к работе подключаются дополнительные инспираторные мышцы - межреберные, лестничные и грудино-ключично-сосцевидные . Выдох в покое происходит пассивно за счет эластической отдачи легких и грудной клетки. Работа дыхательных мышц создает градиент давления, необходимый для формирования воздушного потока.

Прямые измерения давления в плевральной полости показали, что в конце выдоха внутриплевральное (внутригрудное) давление на 3-5 см вод. ст., а в конце вдоха - на 6-8 см вод. ст. ниже атмосферного. Обычно измеряют давление не в плевральной полости, а в нижней трети пищевода , которое, как показали исследования, близко по значению и очень хорошо отражает динамику изменения внутригрудного давления. Альвеолярное давление равно сумме давления эластической тяги легкого и плеврального давления и может быть измерено методом перекрытия воздушного потока, когда оно становится равным давлению в ротовой полости. В общем виде уравнение для движущего давления в легких имеет вид:

Ptot = (Е × ΔV) + (R × V") + (I × V""),

  • Ptot - движущее давление;
  • Е - эластичность;
  • ΔV - изменение объема легких;
  • R - сопротивление;
  • V" - объемная скорость потока воздуха;
  • I - инерционность;
  • V"" - ускорение воздушного потока.

Первое выражение в скобках (Е × ΔV) представляет собой давление, необходимое для преодоления эластической отдачи дыхательной системы . Оно равно транспульмональному давлению, которое можно измерить катетером в грудной полости и приближенно равно разнице давлений в ротовой полости и пищеводе. Если одновременно регистрировать объем легких на вдохе и выдохе и внутрипищеводное давление, используя заслонку для перекрытия потока, получим статическую (т. е. при отсутствии потока) кривую «давление - объем», имеющую вид гистерезиса (рис. 1) - кривой, характерной для всех эластических структур.

Кривые «давление - объем » на вдохе и выдохе неодинаковы. При одном и том же давлении объем спадающихся легких больше, чем во время их раздувания (гистерезис ).

Особенностью гистерезиса является то, что для создания определенного объема на вдохе (растяжении) требуется больший градиент давления, чем при выдохе. На рис. 1 видно, что гистерезис не располагается в нулевой точке объема, поскольку легкие изначально содержат объем газа, равный функциональной остаточной емкости (ФОЕ). Отношение между давлением и изменением объема легких не остается постоянным на всем диапазоне легочных объемов. При незначительном наполнении легких это отношение равно Е × ΔV. Константа Е характеризует эластичность - меру упругости легочной ткани. Чем больше эластичность, тем большее давление необходимо приложить для достижения заданного изменения объема легких. Легкое более растяжимо при низких и средних объемах. По достижении максимального объема легкого дальнейший прирост давления увеличить его не может - кривая переходит в ее плоскую часть. Изменение объема на единицу давления отображается наклоном гистерезиса и называется статической растяжимостью (C stat), или комплайенсом . Растяжимость обратно пропорциональна (реципрокна) эластичности (C stat = 1/Е). На уровне функциональной остаточной емкости 0,5 л статическая растяжимость легкого в норме около 200 мл/см вод. ст. у мужчин и 170 мл/см вод. ст. у женщин. Она зависит от многих причин, в том числе, от размера легких. Чтобы исключить последний фактор, вычисляют удельную растяжимость - отношение растяжимости к объему легких, при котором она измеряется, к общей емкости легких (ОЕЛ) а также к функциональной остаточной емкости. Как и для других параметров, для эластичности и растяжимости разработаны должные величины, зависящие от пола, возраста, антропометрических данных пациента.

Эластические свойства легких зависят от содержания эластических структур в тканях. Геометрическое расположение нитей эластина и коллагена в альвеолах, вокруг бронхов и сосудов наряду с поверхностным натяжением сурфактанта придают легким эластические свойства. Патологические процессы в легких изменяют эти свойства. Статическая растяжимость у пациентов с обструктивными заболеваниями близка к норме, если паренхима легких мало затронута при этих заболеваниях. У пациентов с эмфиземой нарушение эластической отдачи легких сопровождается увеличением их растяжимости (комплайенса). Бронхиальная обструкция в свою очередь может приводить к изменению воздухонаполненности (или структуры статических объемов) в сторону гипервоздушности легких. Основным проявлением гипервоздушности легких или увеличения их воздухонаполненности является увеличение общей емкости легких , полученной при бодиплетизмографическом исследовании или методом разведения газов. Один из механизмов повышения общей емкости легких при хронической обструктивной болезни легких (ХОБЛ) - снижение давления эластической отдачи по отношению к соответствующему легочному объему. В основе развития синдрома гипервоздушности легких лежит еще один важный механизм. Повышение легочного объема способствует растяжению дыхательных путей и, следовательно, повышению их проходимости. Таким образом, возрастание функциональной остаточной емкости легких представляет собой своего рода компенсаторный механизм, направленный на растяжение и увеличение внутреннего просвета бронхов. Однако подобная компенсация идет в ущерб эффективности работы респираторных мышц вследствие неблагоприятного соотношения «сила - длина». Гипервоздушность средней степени выраженности приводит к снижению общей работы дыхания, так как при незначительном повышении работы вдоха имеет место существенное снижение экспираторного вязкостного компонента. Отмечается также изменение формы и угла наклона петли «давление - объем». Кривая статистической растяжимости сдвигается вверх и влево. При эмфиземе, которая характеризуется утратой соединительнотканных компонентов, эластичность легких снижается (соответственно, статическая растяжимость увеличивается). Для выраженной ХОБЛ характерно увеличение функциональной остаточной емкости, остаточного объема (ОО) и отношения ОО к общей емкости легких. В частности, общая емкость легких увеличена у пациентов с тяжелой эмфиземой. Увеличение статической легочной растяжимости, снижение давления эластической тяги легкого при данном объеме легкого и изменение формы кривой «статическое давление - объем легкого» характерны для эмфиземы легких. У многих пациентов с ХОБЛ максимальное инспираторное и экспираторное давление (PI max и PE max) снижены. В то время как PEmax снижено вследствие гиперинфляции и укорочения инспираторных дыхательных мышц, PE max менее подвержено влиянию изменений механики дыхания. Снижение PE max может быть связано со слабостью мускулатуры, что обычно имеет место при прогрессирующей ХОБЛ. Измерение максимальных респираторных давлений показано при наличии подозрений на плохое питание или стероидную миопатию, а также в тех случаях, когда степень диспноэ или гиперкапнии не соответствует имеющемуся объему форсированного выдоха за первую секунду.

При рестриктивных легочных заболеваниях , напротив, изменяется структура легочных объемов в сторону снижения общей емкости легких. Это происходит, главным образом, за счет уменьшения жизненной емкости легких. Эти изменения сопровождаются снижением растяжимости легочной ткани. Фиброз легких, застойная сердечная недостаточность, воспалительные изменения уменьшают комплайенс. При дефиците нормального сурфактанта (респираторном дистресс-синдроме) легкие становятся неподатливыми, ригидными.

При эмфиземе показатели диффузионной способности легких DLCO и ее отношения к альвеолярному объему DLCO/Va снижены, главным образом вследствие деструкции альвеолярнокапиллярной мембраны, уменьшающей эффективную площадь газообмена. Однако снижение диффузионной способности легких на единицу объема (DLCO/Va) (т. е. площади альвеолокапиллярной мембраны) может быть компенсировано возрастанием общей емкости легких. Для диагностики эмфиземы исследование DLCO показало себя более информативным, чем определение легочной растяжимости, а по способности к регистрации начальных патологических изменений легочной паренхимы данный метод сопоставим по чувствительности с компьютерной томографией.

У злостных курильщиков , составляющих основную массу больных ХОБЛ, и у пациентов, подвергающихся профессиональному воздействию окиси углерода на рабочем месте, отмечается остаточное напряжение СО в смешанной венозной крови, что может привести к ложно заниженным значениям DLCO и его компонентов.

Расправление легких при гипервоздушности приводит к растяжению альвеолярно-капиллярной мембраны, уплощению капилляров альвеол и возрастанию диаметра «угловых сосудов» между альвеолами. В результате общая диффузионная способность легких и диффузионная способность самой альвеолокапиллярной мембраны возрастают с объемом легких, но соотношение DLCO/Va и объем крови в капиллярах (Qc) уменьшаются. Подобный эффект легочного объема на DLCO и DLCO/VA может приводить к неправильной интерпретации результатов исследования при эмфиземе.

При рестриктивных легочных заболеваниях характерно значительное снижение диффузионной способности легких (DLCO). Отношение DLCO/Va может быть снижено в меньшей степени из-за одновременного значительного уменьшения объема легких.

Большее клиническое значение имеет измерение динамической растяжимости (C dyn), когда рассматривают изменение объема легких относительно изменения давления при наличии воздушного потока. Оно равно наклону линии, соединяющей точки начала вдоха и выдоха на кривой «динамическое давление - объем» (рис. 2).

Если сопротивление дыхательных путей нормальное, C dyn близка по величине к C stat и слабо зависит от частоты дыхания. Уменьшение C dyn по сравнению с C stat может свидетельствовать о негомогенности легочной ткани. При увеличении сопротивления, даже незначительном и ограниченном мелкими бронхами, Cdyn снизится раньше, чем это нарушение будет выявлено обычными функциональными методами. Снижение C dyn особенно проявится при высокой частоте дыхания, так как при частом дыхании время, необходимое для наполнения легкого или его части с обструкцией, становится недостаточным. Изменения Cdyn, зависящие от частоты дыхания, называются частотно-зависимой растяжимостью. В норме C dyn /C stat больше 0,8 при любой частоте дыхания.

При обструкции, в том числе дистальной, это отношение падает с увеличением частоты дыхания. Величина C stat , в отличие от C dyn , зависит не от частоты дыхания, а от его глубины, точнее, от уровня жизненной емкости легких (ЖЕЛ), на котором она регистрировалась. Измерения Cstat на уровне спокойного дыхания дают минимальное значения, при глубоком вдохе величина C stat максимальна. При проведении измерения компьютерная программа вычисляет C stat на различных уровнях ЖЕЛ и строит график зависимости объема легких от внутригрудного (внутрипищеводного) давления. При эмфиземе легких такая кривая будет иметь более крутой наклон (C stat увеличивается), при легочных фиброзах - более пологий (C stat снижается).

Помимо рассмотренных показателей C stat , C dyn исследование дает возможность получить ряд других измеренных и производных величин (рис. 3). Важными показателями, которые мы получаем при измерении растяжимости легких, являются Pel - транспульмональное (пищеводное) давление, которое отражает давление эластической отдачи легких; P 0dyn - давление на уровне функциональной остаточной емкости; Pel RV - давление на уровне остаточного объема; PTL/IC - отношение транспульмонального (пищеводного) давления к емкости вдоха; P0stat, Pel 100, Pel 80, Pel 50 - транспульмональное (пищеводное) давление при глубине вдоха соответственно на уровне функциональной остаточной емкости, ЖЕЛ, 80% ЖЕЛ, 50% ЖЕЛ. Для получения производных величин - отношения комплайенса к функциональной остаточной емкости, внутригрудному объему или общей емкости легких, важность которых определяется тем, что растяжимость легких зависит от их размеров, эти показатели необходимо предварительно измерить (например, при проведении бодиплетизмографии). Отношение С (растяжимости) к общей емкости легких именуют индексом ретракции. Следует отметить, что хотя для всех вышеперечисленных величин предложены формулы расчета должных величин, индивидуальные различия весьма значительны. Используя петлю «давление-объем», можно рассчитать работу по преодолению упругих и вязких сил (эластического и неэластического сопротивления). Площадь условного прямоугольного треугольника, гипотенузой которого является прямая, соединяющая точки смены фаз дыхания, а сторонами - проекции на оси координат (рис. 3), равна работе дыхательных мышц по преодолению эластического сопротивления легких.

Площадь фигуры под гипотенузой соответствует работе вдоха по преодолению аэродинамического (бронхиального) сопротивления. Показатель работы дыхания сильно зависит от минутного объема дыхания, его частоты и глубины и может варьироваться от 0,25 кгм/мин до 15 кгм/мин. В норме около 70% общей работы расходуется на преодоление эластического и 30% - неэластического (аэродинамического) сопротивления. Их соотношение позволяет уточнить преобладание обструктивных или рестриктивных нарушений. Уменьшению энерготрат способствует поверхностное (но частое) дыхание, что мы наблюдаем в клинике у больных с выраженными фиброзными изменениями, или медленное дыхание у больных с тяжелой обструкцией. Измерение комплайенса позволяет не только установить степень поражения легких, но и наблюдать динамику патологического процесса, контролировать лечение. Прежде всего, это важно при хронических распространенных поражениях легких, обусловленных идиопатическими интерстициальными пневмонитами, ревматическими, профессиональными и другими заболеваниями легких. Особая ценность метода в том, что изменения растяжимости могут быть выявлены на ранних стадиях как обструктивных, так и рестриктивных нарушений, которые не фиксируются другими методами исследований, что важно для раннего выявления заболеваний легких.

Лаптева И. М., Томашевский А. В.
Республиканский научно-практический центр пульмонологии и фтизиатрии.
Журнал «Медицинская панорама» № 9, октябрь 2009.

Функциональные методы исследования

Исследование эластических свойств легких в клинической практике

М.Ю. Каменева

В статье описан метод исследования эластических свойств легких с пищеводным зондом и представлены возможности его применения в клинической практике.

Ключевые слова: эластические свойства легких, растяжимость легких, работа дыхания, эмфизема легких, фиброз легких.

Под эластическими (упругими) свойствами легких понимают их способность изменять объем в зависимости от приложенной силы. Являясь важнейшей характеристикой механики дыхания, податливость легких, т.е. их способность к растяжению, определяет величины статических легочных объемов и просвета дыхательных путей, особенно их периферических отделов. Кроме того, физическое свойство эластических структур - способность аккумулировать энергию при растяжении - позволяет здоровому человеку осуществлять спокойный выдох пассивно, без участия дыхательных мышц, минимизируя, таким образом, энергетическую стоимость дыхания.

Эластические свойства легких формируются за счет соединительнотканного каркаса, представленного эластическими, коллагеновыми и ретикулярными волокнами, сил поверхностного натяжения, кровенаполнения легочных сосудов и тонуса гладких мышц. Для изучения эластических свойств легких используют методику с пищеводным зондом. В клинической практике она не нашла широкого применения, что лишь отчасти связано с трудоемкостью и инвазивным характером исследования, а в большей степени обусловлено недостаточной осведомленностью специалистов о возможностях метода. Указанное исследование позволяет не только определить, каким образом изменяются упругие свойства легких - увеличиваются или, наоборот, снижаются, но и ответить на ряд важных для практикующего специалиста вопросов: поражение самих легких

Марина Юрьевна Каменева - докт. мед. наук, вед. науч. сотр. Научно-исследовательского центра ФГБОУ ВО "Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова" МЗ РФ. Контактная информация: [email protected]

(интерстициальное воспаление, фиброз, отек) или какие-то патологические изменения внелегочных структур (слабость дыхательных мышц, деформация грудной клетки) послужили причиной снижения легочных объемов? связана ли обструкция дыхательных путей с разрушением эластического каркаса легких - эмфиземой или обусловлена внутрибронхиальными причинами (отек, воспаление, спазм гладкой мускулатуры)? за счет чего изменяется работа дыхания?

Методологические аспекты проведения исследования

К показателям, характеризующим эластические свойства легких, относятся растяжимость легких (lung compliance, CL), их эластичность (lung elastance, EL) и работа дыхания (work of breathing, W). В основу метода положено измерение транспульмонального давления (Ртп) с помощью пищеводного зонда и специального блока, интегрированного, как правило, в бодиплетиз-мограф.

Способность легких к растяжению зависит от их эластического давления (elastic pressure of the lung, lung recoil pressure - Plel), величину которого определяют по разнице давлений, действующих на легкие изнутри (альвеолярное давление, PA) и снаружи (плевральное давление, Рпл):

Прямое измерение Рпл возможно только в условиях эксперимента, поскольку сопряжено с опасными и травматичными манипуляциями, поэтому в клинической практике вместо Рпл с помощью специального зонда определяют давление внутри пищевода (Р). Пищеводный зонд пред-

ставляет собой жесткий полиэтиленовый катетер с внутренним диаметром 1-1,5 мм, на конце которого закреплен тонкостенный латексный баллон (рис. 1). В специальных исследованиях было установлено, что абсолютная величина Р

несколько превышает Рпл, но при вертикальном положении тела колебания давления в латекс-ном баллоне, размещенном в нижней трети пищевода, практически равны изменениям Рпл .

Прямого измерения РА также не производят и при расчете Ртп его величину считают равной давлению в полости рта (Ррот) :

тп рот пищ

Зонд в пищевод вводят через нижний носовой ход под местной анестезией - раствор анестетика закапывают в нижний носовой ход 3-4 раза с 15-минутными интервалами. Для фиксации зонда используют носовой зажим. Схематическое изображение правильного расположения пищеводного зонда представлено на рис. 2. Поскольку спазмы пищевода не позволяют выполнить корректные измерения, исследование проводят спустя 1,5-2 ч после легкой еды.

Сужение и деформация носовых ходов, склонность к носовым кровотечениям и повышенный рвотный рефлекс являются противопоказаниями к назначению исследования наряду с общими для всех легочных функциональных тестов противопоказаниями, такими как отсутствие контакта с пациентом, заболевания и состояния, не позволяющие пациенту выполнять необходимые дыхательные маневры, травмы и заболевания челюстно-лицевого аппарата, препятствующие правильному подсоединению загубника и носового зажима.

Во время измерения пациент дышит через пневмотахометр, что позволяет одновременно с изменениями Ртп регистрировать изменения объема легких (V). Запись отображается на экране монитора в координатах V-Pтп в виде замкнутых петель - кривых растяжимости. Кривые растяжимости, регистрируемые при спокойном или частом дыхании, имеют эллипсоидную форму (рис. 3а), а записанные при максимально глубоком и замедленном дыхании - Я-образную, что связано со снижением растяжимости в области предельных объемов (рис. 3б).

Одновременная запись изменений Ртп и V позволяет рассчитать Сь и обратную ей величину Еь :

~- Пневмотахометр - Пищеводный зонд

Пищеводный зонд Диафрагма

Рис. 2. Схематическое изображение правильного положения пищеводного зонда (в нижней трети пищевода) при измерении транспульмо-нального давления (VIASYS Healthcare Gmbh, Германия).

CL = AV/AP; El = 1/CL = AP/AV.

Следовательно, CL характеризует способность легких изменять объем в зависимости от приложенной силы, а El, наоборот, соответствует тому усилию, которое затрачивается дыхательными мышцами на расправление легких. Чем жестче легкое, что наблюдается, например, у больных идиопатическим легочным фиброзом, тем больше сил требуется на его растяжение - EL возрастает, а CL снижается, поскольку даже хорошая работа дыхательных мышц неспособна адекватно увеличить объем ригидного легкого. Противоположная картина наблюдается при эмфиземе легких, когда разрушение эластического каркаса делает легкие податливыми и даже небольшое усилие приводит к их быстрому расправлению на вдохе, за которым следует такое же скорое спадение их на выдохе - CL возрастает, а EL снижается.

Растяжимость, определяемую при спокойном или учащенном дыхании, принято называть динамической (dynamic compliance - Cldyn), а определяемую при глубоком и максимально замедленном дыхании - статической (static compliance - Clstat). Исследование эластических свойств легких требует создания статических

2-101234 Транспульмональное давление, кПа

Рис. 3. Кривые растяжимости здорового человека: а - при спокойном дыхании; б - при замедленном дыхании с максимальной амплитудой изменения объема (от уровня общей емкости легких до уровня остаточного объема легких). Нулевая отметка на оси ординат соответствует уровню функциональной остаточной емкости легких.

условий, под которыми понимают отсутствие воздушного потока при полном расслаблении дыхательной мускулатуры. Поскольку в истинно статических условиях провести исследование у человека невозможно, на практике Сь измеряют в максимально приближенных к ним условиях, называемых квазистатическими. Для Съйуп такие условия возникают в момент смены фаз ды-

Транспульмональное давление, кПа

Рис. 4. Схематическое изображение кривых растяжимости - динамической (1), квазистатической (2) и статической (3). Точками обозначены моменты измерения, соответствующие квазистатическим условиям: для кривой динамической растяжимости - моменты смены фаз дыхательного цикла; для кривой квазистатической растяжимости - моменты прерывания потока воздуха заслонкой. Пояснения в тексте. ЖЕЛ -жизненная емкость легких. Здесь и на рис. 5: ДО - дыхательный объем.

хательного цикла (рис. 4 (1)), а при измерении используют специальный прием: во время глубокого медленного выдоха с уровня общей емкости легких (ОЕЛ) до уровня остаточного объема легких (ООЛ) поток воздуха многократно прерывается при помощи заслонки (см. рис. 4 (2)). В момент срабатывания заслонки измеряют Ртп и по этим точкам строят кривую статической растяжимости (см. рис. 4 (3)). Определение растяжимости легких на выдохе связано с необходимостью нивелировать влияние сил поверхностного натяжения, действующих внутри альвеол.

Определяют Сь как по кривой динамической растяжимости, так и по кривой статической растяжимости. При расчете Съйуп изменение Ртп определяют при изменении объема на величину, равную дыхательному объему (рис. 5 (1)), а при расчете - при изменении объема на 0,5 л

от уровня функциональной остаточной емкости легких (ФОЕ) (см. рис. 5 (2)).

Помимо показателей растяжимости одномоментная регистрация изменений Ртп и V позволяет оценить энергетические затраты дыхательных мышц, связанные с вентиляцией, по выполненной ими работе (W):

Общая работа дыхания (total work of breathing, Wtot) состоит из эластической фракции (elastic work of breathing, Wel) - работы по преодолению эластических сил легких, грудной клетки и действующих внутри альвеол сил поверхностного натяжения, и неэластической (ре-зистивной) (resistive (viscous) work of breathing, W) - работы по преодолению аэродинамиче-

ского сопротивления дыхательных путей (бронхиального сопротивления) и тканевого сопротивления . Определение работы дыхания проводят как в покое, так и при различных режимах увеличения вентиляции - физической нагрузке или произвольной гипервентиляции.

Оценка результатов исследования

Для интерпретации полученных данных трудно рекомендовать определенную систему должных величин, поскольку исследований эластических свойств легких у большого числа здоровых лиц обоего пола в широком возрастном диапазоне не проводилось. В практической работе используют референсные значения, которые заложены в программное обеспечение прибора и представляют собой совокупность данных из различных источников и исследований, проведенных по инициативе производителя оборудования .

Диапазон нормальных значений CL довольно широкий - 100 ± 50% от должного значения, что связано с выраженной зависимостью тонуса гладких мышц и кровенаполнения легочных капилляров от состояния нервной системы и воздействия гуморальных факторов . При анализе растяжимости используют также ее удельные, т.е. рассчитанные на единицу объема (ФОЕ или ОЕЛ), величины: специфическую динамическую (CLdyn/ФОЕ, &ауп/ОЕЛ) и специфическую статическую (Cl^/фОе, Cl^/ОЕЛ) растяжимость . Реже оценивают величины Ртп при различной воз-духонаполненности легких - на уровне 50, 60, 70, 80, 90 и 100% ОЕЛ (Ртп 100% ОЕЛ). Однако наиболее информативным считается индекс ретракции легких (coefficient of retraction, CR), рассчитываемый с учетом величин ОЕЛ и Ртп 100% ОЕЛ :

тп 100% ОЕЛ

Диапазон нормальных значений CR для мужчин и женщин одинаковый и составляет 0,30-0,60 кПа/л .

Повышение массы интерстициальной ткани при диссеминированных заболеваниях легких, застойных явлениях в малом круге кровообращения приводит к снижению CL, а разрушение эластического каркаса легких при эмфиземе - к ее увеличению . Изменение растяжимости может предшествовать появлению других функциональных признаков вентиляционных нарушений. В работе P.W. Boros et al. у больных с I-III стадией саркоидоза органов дыхания CL была снижена в 24,5% случаев, в то время как ОЕЛ оставалась в пределах физиологической нормы . Изменение растяжимости не только

Транспульмональное давление, кПа

Рис. 5. Схематическое изображение измерения растяжимости: синим цветом обозначены данные, относящиеся к динамической растяжимости, красным - относящиеся к статической растяжимости. 1 - кривая динамической растяжимости: ДУ, - изменение объема и соот-

ветствующее ему изменение транспульмональ-ного давления (ДРтПйуп), необходимые для расчета Сьйуп; 2 - кривая статической растяжимости: ДУа4а4 - изменение объема и соответствующее ему изменение транспульмонального давления (ДРТп8Ш), необходимые для расчета СъяШ.

предшествовало появлению рестриктивных нарушений, но и выявлялось у больных с нормальной диффузионной способностью легких, т.е. было самым первым функциональным признаком поражения легких. Поскольку CR характеризует не растяжимость, а эластичность легких, то он изменяется противоположным Сь образом - повышается при интерстициальном отеке или фиброзе и снижается при эмфизематозной деструкции легких . Благодаря хорошей чувствительности и специфичности показатели легочной растяжимости и эластичности успешно применяются в торакальной хирургии для оценки результатов хирургической редукции объема легких, трансплантации легких .

Анализ кривых статической растяжимости позволяет наглядно продемонстрировать различие в податливости легочной паренхимы, когда одно и то же изменение Ртп, например равное 1 кПа, у больного с эмфиземой легких вызывает изменение объема легких (Ух), практически в 5 раз большее, чем у больного с легочным фиброзом (У2) (рис. 6).

Показатели работы дыхания информативны при диагностике обструктивных нарушений. У здорового человека при спокойном дыхании

Эмфизема легких

А В Норма

Фиброз легких

Обструкция дыхательных путей

Транспульмональное давление, кПа

Рис. 7. Схематическое изображение кривых динамической растяжимости при спокойном дыхании в норме, при фиброзе легких и обструкции дыхательных путей: AD/AB - динамическая растяжимость легких; ADC - эластическая фракция общей работы дыхания; синяя штриховка - неэластическая (резистивная) фракция общей работы дыхания на вдохе; красная штриховка - неэластическая (резистивная) фракция общей работы дыхания на выдохе, требующем активного участия дыхательных мышц.

большая часть работы дыхания («65-70%) связана с преодолением эластического сопротивления. Эта энергия накапливается в эластических структурах по мере их растяжения на вдохе и покрывает энерготраты спокойного выдоха. При заболеваниях, связанных с поражением ин-терстициальной ткани легких, увеличение Wtot происходит в основном за счет возрастания Wel (рис. 7) . При обструктивной патологии основные энерготраты приходятся на преодоление возрастающего сопротивления дыхательных путей . Характерным признаком наличия обструкции дыхательных путей является не про-

сто увеличение W , а появление W при спо-

койном выдохе, что свидетельствует о неспособности в условиях возросшего бронхиального сопротивления осуществить спокойный выдох без активной работы дыхательной мускулатуры (см. рис. 7). Следует отметить, что увеличение как W , так и W, можно отнести к самым ранним

функциональным признакам респираторных заболеваний. У здорового человека потребность в активной Wres на выдохе возникает только при значительной физической нагрузке .

Несмотря на инвазивный характер исследования эластических свойств легких, оно хорошо переносится больными. Метод обладает высокой информативностью, поскольку определяемые параметры непосредственно характеризуют свойства легочной паренхимы. Диагностированное повышение упругости легочной ткани (увеличение CR и уменьшение CL) позволяет связать снижение легочных объемов с патологией легких, исключив при этом внелегочные причины рестриктивных нарушений (слабость дыхательных мышц, ограничение подвижности грудной клетки и др.). Снижение эластичности легочной паренхимы специфично для эмфиземы легких и помогает выявлять бронхиальную обструкцию, связанную с экспираторным коллапсом дыхательных путей. Это имеет важное значение при диагностике поражения периферических отделов дыхательных путей и определении тактики ведения больных с бронхообструктивным синдромом. Показатели растяжимости и работы дыхания успешно применяются для оценки эффективности хирургического лечения эмфиземы легких. Особая ценность метода состоит в том, что изменения эластических свойств легких как в сторону увеличения, так и в сторону снижения могут быть самыми ранними признаками легочных заболеваний, появляющимися еще до того, как регистрируются отклонения параметров традиционных методов исследования механики дыхания - спирометрии и бодиплетизмографии. Исследование эластических свойств легких, особенно работы дыхания, информативно при детализации вентиляционных нарушений смешанного характера.

Список литературы

1. Кузнецова В.К., Любимов Г.А. Механика дыхания. В кн.: Физиология дыхания. Отв. ред. Бреслав И.С., Исаев Г.Г. СПб.: Наука 1994: 54-104.

2. Yernault J.C. Lung mechanics I: lung elasticity. Bull Eur Physiopathol Respir 1983; 19(Suppl. 5): 28-32.

3. Руководство по клинической физиологии дыхания. Под ред. Шика Л.Л., Канаева Н.Н. Л.: Медицина 1980; 376с.

4. Yernault J.C., Englert M. Static mechanical lung properties in young adults. Bull Physiopathol Respir (Nancy) 1974; 10(4): 435-450.

5. Galetke W., Feier C., Muth T., Ruehle K.H., Borsch-Galet-ke E., Randerath W. Reference values for dynamic and static pulmonary compliance in men. Respir Med 2007; 101(8): 1783-1789.

6. Zapletal A., Paul T., Samanek M. Pulmonary elasticity in children and adolescents. J Appl Physiol 1976; 40(6): 953-961.

7. Schlueter D.P., Immekus J., Stead W.W. Relationship between maximal inspiratory pressure and total lung capacity (coefficient of retraction) in normal subjects and in patients with emphysema, asthma, and diffuse pulmonary infiltration. Am Rev Respir Dis 1967; 96(4): 656-665.

8. Кузнецова В.К., Садовская М.П., Буланина Е.М. Хронический бронхит в свете функционально-диагностического исследования. В сб. науч. тр.: Современные проблемы клинической физиологии дыхания. Под ред. Клемента Р.Ф., Кузнецовой В.К. Л.: ВНИИ пульмонологии 1987: 71-88.

9. Каменева М.Ю. Исследование функции внешнего дыхания. В кн.: Интерстициальные заболевания легких. Руководство для врачей. Под ред. Ильковича М.М., Кокосова А.Н. СПб.: Нордмедиздат 2005: 50-58.

10. Клемент Р.Ф., Зильбер Н.А. Диагностика нарушений функции внешнего дыхания. В кн.: Диссеминированные процессы в легких. Под ред. Путова Н.В. М.: Медицина 1984: 53-66.

11. Гриппи М.А. Патофизиология легких. М.: Восточная книжная компания 1997; 344с.

12. Boros P.W., Enright P.L., Quanjer P.H., Borsboom G.L., We-solowski S.P., Hyatt R.E. Impaired lung compliance and DL, CO but no restrictive ventilatory defect in sarcoidosis. Eur Respir J 2010; 36(6): 1315-1322.

13. Кузнецова В.К., Любимов А.Г., Каменева М.Ю. Динамика сопротивления потоку воздуха в фазу его нарастания в процессе форсированного выдоха при различных нарушениях механики дыхания. Пульмонология 1995; 4: 36-41.

14. Norman M., Hillerdal G., Orre L., Jorfeldt L., Larsen F., Cederlund K., Zetterberg G., Unge G. Improved lung function and quality of life following increased elastic recoil after lung volume reduction surgery in emphysema. Respir Med 1998; 92(4): 653-658.

15. Sciurba F.S., Rogers R.M., Keenan R.J., Slivka W.A., Gorcsan J. 3rd, Ferson P.F., Holbert J.M., Brown M.L., Lan-dreneau R.J. Improvement in pulmonary function and elastic recoil after lung reduction surgery for diffuse emphysema. N Engl J Med 1996; 334: 1095-1099.

16. Scott J.P., Gillespie D.J., Peters S.G., Beck K.C., Midthun D.E., McDougall J.C., Daly R.C., McGregor C.G. Reduced work of breathing after single lung transplantation for emphysema. J Heart Lung Transplant 1995; 14(1 Pt. 1): 39-43.

17. Dellweg D., Haidl P., Siemon K., Appelhans P., Kohler D. Impact of breathing pattern on work of breathing in healthy subjects and patients with COPD. Respir Physiol Neurobiol 2008; 161(2): 197-200.

The Assessment of Elastic Properties of Lungs in Clinical Practice

The article deals with the method of assessment of elastic properties of lungs using esophageal probe. The role of elastic properties of lungs in clinical practice is discussed.

Key words: elastic properties of lungs, lung compliance, work of breathing, pulmonary emphysema, pulmonary fibrosis.

Монография издательства "Атмосфера"

ФУНКЦИОНАЛЬНАЯ

ДИАГНОСТИКА В ПУЛЬМОНОЛОГИИ

Функциональная диагностика в пульмонологии: Монография Под ред. З.Р. Айсанова, А.В. Черняка

(Серия монографий Российского респираторного общества; гл. ред. серии А.Г. Чучалин)

Монография фундаментальной серии Российского респираторного общества обобщает накопленный мировой и отечественный опыт по всему кругу проблем, связанных с функциональной диагностикой в пульмонологии. Излагаются физиологические основы каждого метода исследования легочной функции и особенности интерпретации результатов. Обобщен международный опыт использования и интерпретации различных методов функциональной диагностики легочных заболеваний, в том числе сравнительно мало применяемых в нашей стране, но крайне необходимых при диагностике функциональных тестов: измерение легочных объемов, оценка диффузионной способности легких и силы дыхательной мускулатуры, внелабораторные методы определения толерантности больных с бронхолегочной патологией к физической нагрузке и т.п. 184 с., ил., табл.

Для пульмонологов, терапевтов, врачей общей практики, семейных врачей, а также для специалистов по функциональной диагностике.

Понравилась статья? Поделитесь ей