Kapcsolatok

Másodfokú egyenlet, ahol a diszkrimináns nulla. A diszkrimináns keresése, képlet, összehasonlítás nullával

Kopjevszkaja vidéki középiskola

10 módszer a másodfokú egyenletek megoldására

Vezető: Patrikeeva Galina Anatoljevna,

matematika tanár

s.Kopyevo, 2007

1. A másodfokú egyenletek kialakulásának története

1.1 Másodfokú egyenletek az ókori Babilonban

1.2 Hogyan állította össze és oldotta meg Diophantus a másodfokú egyenleteket

1.3 Másodfokú egyenletek Indiában

1.4 Másodfokú egyenletek al-Khwarizmiban

1.5 Másodfokú egyenletek Európában XIII - XVII. század

1.6 Vieta tételéről

2. Másodfokú egyenletek megoldási módszerei

Következtetés

Irodalom

1. A másodfokú egyenletek kialakulásának története

1.1 Másodfokú egyenletek az ókori Babilonban

Az ókorban nemcsak az első, hanem a másodfokú egyenletek megoldásának igényét a katonai jellegű földterületek és földművek felkutatásával, valamint a csillagászat fejlődésével kapcsolatos problémák megoldásának igénye okozta. maga a matematika. A másodfokú egyenleteket Kr.e. 2000 körül tudták megoldani. e. babilóniaiak.

A modern algebrai jelölést alkalmazva elmondhatjuk, hogy ékírásos szövegeikben a hiányos szövegeken kívül vannak például teljes másodfokú egyenletek:

x 2 + x = ¾; x 2 - x = 14,5

Az egyenletek megoldására vonatkozó, a babiloni szövegekben megfogalmazott szabály lényegében egybeesik a modernnel, de nem ismert, hogy a babilóniaiak hogyan jutottak el ehhez a szabályhoz. Az eddig talált ékírásos szövegek szinte mindegyike csak a recept formájában megfogalmazott megoldási problémákat ad, a megtalálás módját nem jelzik.

Ellenére magas szint algebra fejlődése Babilonban, az ékírásos szövegekben nincs fogalma a negatív számnak és közös módszerek másodfokú egyenletek megoldásai.

1.2 Hogyan állította össze és oldotta meg Diophantus a másodfokú egyenleteket.

Diophantus aritmetikája nem tartalmazza az algebra szisztematikus kifejtését, hanem egy szisztematikus feladatsort tartalmaz magyarázatokkal kísérve, amelyeket különböző fokú egyenletek felállításával oldanak meg.

Az egyenletek összeállításakor Diophantus ügyesen választ ismeretleneket, hogy leegyszerűsítse a megoldást.

Itt van például az egyik feladata.

11. feladat."Keress két számot úgy, hogy az összegük 20, a szorzatuk pedig 96"

Diophantus a következőképpen érvel: a feladat feltételéből az következik, hogy a kívánt számok nem egyenlőek, hiszen ha egyenlőek lennének, akkor a szorzatuk nem 96 lenne, hanem 100. Így az egyik a számuk több mint fele lesz. összeg, azaz . 10+x, a másik kisebb, i.e. 10-es. A különbség köztük 2x .

Ezért az egyenlet:

(10 + x) (10 - x) = 96

100 - x 2 = 96

x 2-4 = 0 (1)

Innen x = 2. A kívánt számok egyike 12 , Egyéb 8 . Megoldás x = -2 mert Diophantus nem létezik, mivel a görög matematika csak pozitív számokat ismert.

Ha ezt a feladatot úgy oldjuk meg, hogy a kívánt számok egyikét ismeretlennek választjuk, akkor eljutunk az egyenlet megoldásához

y(20 - y) = 96,

y 2 - 20y + 96 = 0. (2)


Nyilvánvaló, hogy Diophantus leegyszerűsíti a megoldást azzal, hogy a kívánt számok félkülönbségét választja ismeretlennek; sikerül a problémát egy hiányos másodfokú egyenlet (1) megoldására redukálnia.

1.3 Másodfokú egyenletek Indiában

A másodfokú egyenletekkel kapcsolatos problémák már megtalálhatók az "Aryabhattam" csillagászati ​​traktátusban, amelyet Aryabhatta indiai matematikus és csillagász állított össze 499-ben. Egy másik indiai tudós, Brahmagupta (7. század) kifejtette Általános szabály másodfokú egyenletek egyetlen kanonikus formára redukált megoldásai:

ah 2+ b x = c, a > 0. (1)

Az (1) egyenletben az együtthatók, kivéve a a, negatív is lehet. Brahmagupta uralma lényegében egybeesik a miénkkel.

NÁL NÉL ősi india gyakoriak voltak a nyilvános versenyek a nehéz problémák megoldásában. Az egyik régi indiai könyvben a következőt mondják az ilyen versenyekről: „Ahogy a nap ragyogásával felülmúlja a csillagokat, úgy tudós ember elhomályosítani egy másik dicsőségét nyilvános üléseken, algebrai problémákat javasolva és megoldva. A feladatokat gyakran költői formába öltöztették.

Itt van a XII. század híres indiai matematikusának egyik problémája. Bhaskara.

13. feladat.

„Egy nyüzsgő majomcsapat és tizenkettő a szőlőben…

Miután evett erőt, jól érezte magát. Ugrálni kezdtek, lógva...

Nyolcadik részük egy négyzetben Hány majom volt ott,

Szórakozás a réten. Mondja, ebben a nyájban?

Bhaskara megoldása azt jelzi, hogy tudott a másodfokú egyenletek gyökeinek kétértékűségéről (3. ábra).

A 13. feladatnak megfelelő egyenlet:

( x /8) 2 + 12 = x

Bhaskara ezt írja leple alatt:

x 2 - 64x = -768

és hogy ennek az egyenletnek a bal oldalát négyzetté egészítse ki, mindkét oldalt hozzáadja 32 2 , akkor kapok:

x 2 - 64x + 32 2 = -768 + 1024,

(x - 32) 2 = 256,

x - 32 = ± 16,

x 1 = 16, x 2 = 48.

1.4 Másodfokú egyenletek al-Khorezmiben

Al-Khorezmi algebrai értekezése a lineáris és másodfokú egyenletek osztályozását adja meg. A szerző 6 típusú egyenletet sorol fel, ezeket a következőképpen fejezi ki:

1) "A négyzetek egyenlőek a gyökökkel", azaz. ax 2 + c = b X.

2) "A négyzetek egyenlőek a számmal", azaz. ax 2 = s.

3) "A gyökök egyenlőek a számmal", azaz. ah = s.

4) "A négyzetek és a számok egyenlőek a gyökkel", azaz. ax 2 + c = b X.

5) "A négyzetek és a gyökök egyenlőek a számmal", azaz. ah 2+ bx = s.

6) "A gyökök és a számok egyenlőek a négyzetekkel", azaz. bx + c \u003d ax 2.

Al-Khwarizmi számára, aki kerülte a negatív számok használatát, ezen egyenletek mindegyike összeadás, nem kivonás. Ebben az esetben nyilvánvalóan nem veszik figyelembe azokat az egyenleteket, amelyeknek nincs pozitív megoldása. A szerző felvázolja ezen egyenletek megoldásának módszereit al-jabr és al-muqabala módszereivel. Döntései természetesen nem teljesen esnek egybe a miénkkel. Arról nem is beszélve, hogy pusztán retorikai, meg kell jegyezni például, hogy az első típusú hiányos másodfokú egyenlet megoldásakor

al-Khorezmi, mint minden matematikus a 17. század előtt, nem veszi figyelembe a nulla megoldást, valószínűleg azért, mert az konkrét gyakorlati problémáknál nem számít. A teljes másodfokú egyenletek megoldása során al-Khorezmi meghatározott numerikus példák segítségével meghatározza a megoldási szabályokat, majd a geometriai bizonyításokat.

14. feladat.„A négyzet és a 21-es szám egyenlő 10 gyökkel. Találd meg a gyökeret" (az x 2 + 21 = 10x egyenlet gyökerét feltételezve).

A szerző megoldása valahogy így hangzik: oszd el a gyökök számát felére, kapsz 5-öt, 5-öt megszorozod önmagával, a szorzatból kivonod a 21-et, marad 4. Vedd a 4 gyökét, kapsz 2-t. Vonsz ki 2-t 5-ből, kap 3-at, ez lesz a kívánt gyökér. Vagy adj hozzá 2-t az 5-höz, ami 7-et ad, ez is egy gyökér.

A Treatise al - Khorezmi az első olyan könyv, amely eljutott hozzánk, amelyben szisztematikusan leírják a másodfokú egyenletek osztályozását, és megadják a megoldásukra vonatkozó képleteket.

1.5 Másodfokú egyenletek Európában XIII - A XVII században

A másodfokú egyenletek megoldásának képleteit az al-Khorezmi mintájára Európában először az "Abakusz könyve" írta le, amelyet 1202-ben Leonardo Fibonacci olasz matematikus írt. Ez a terjedelmes munka, amely tükrözi a matematika hatását, mind az iszlám országaiban, mind az Ókori Görögország, a bemutatás teljességében és egyértelműségében egyaránt különbözik. A szerző önállóan dolgozott ki néhány újat algebrai példák problémamegoldás, és Európában elsőként közelítette meg a negatív számok bevezetését. Könyve hozzájárult az algebrai ismeretek elterjedéséhez nemcsak Olaszországban, hanem Németországban, Franciaországban és más európai országokban is. Az „Abakusz könyvéből” sok feladat bekerült szinte az összes 16-17. századi európai tankönyvbe. részben pedig XVIII.

A másodfokú egyenletek megoldásának általános szabálya egyetlen kanonikus formára redukálva:

x 2+ bx = vele,

az együtthatók minden lehetséges előjel-kombinációjára b , Val vel Európában csak 1544-ben fogalmazta meg M. Stiefel.

Másodfokú egyenlet megoldási képletének levezetése in Általános nézet Vietnek vannak, de Viet csak pozitív gyökereket ismert fel. Tartaglia, Cardano, Bombelli olasz matematikusok az elsők között voltak a 16. században. A pozitív és negatív gyökerek mellett vegye figyelembe. Csak a XVII. Köszönhetően Girard, Descartes, Newton és mások munkájának tudósok módjára a másodfokú egyenletek megoldása modern formát ölt.

1.6 Vieta tételéről

A Vieta nevet viselő másodfokú egyenlet együtthatói és gyökei közötti összefüggést kifejező tételt először 1591-ben fogalmazta meg így: „Ha B + D szorozva A - A 2 , egyenlő BD, akkor A egyenlő NÁL NÉLés egyenlő D ».

Ahhoz, hogy megértsük Vietát, emlékeznünk kell erre DE, mint minden magánhangzó, számára az ismeretlent jelentette (a mi x), a magánhangzók NÁL NÉL, D- együtthatók az ismeretlenre. A modern algebra nyelvén Vieta fenti megfogalmazása azt jelenti: ha

(egy + b )x - x 2 = ab ,

x 2 - (a + b )x + a b = 0,

x 1 = a, x 2 = b .

Az egyenletek gyökei és együtthatói közötti kapcsolatot szimbólumokkal írt általános képletekkel kifejezve, Viet egységességet állapított meg az egyenletek megoldási módszereiben. Vieta szimbolikája azonban még messze van modern megjelenés. Nem ismerte fel a negatív számokat, ezért az egyenletek megoldása során csak azokat az eseteket vette figyelembe, ahol minden gyök pozitív.

2. Másodfokú egyenletek megoldási módszerei

A másodfokú egyenletek jelentik az alapot, amelyen az algebra fenséges építménye nyugszik. Másodfokú egyenletek találni széles körű alkalmazás trigonometrikus, exponenciális, logaritmikus, irracionális és transzcendentális egyenletek és egyenlőtlenségek megoldása során. Mindannyian tudjuk, hogyan kell másodfokú egyenleteket megoldani az iskolától (8. osztály) egészen az érettségiig.

Ez a téma elsőre bonyolultnak tűnhet a sok nem túl egyszerű képlet miatt. Nemcsak maguknak a másodfokú egyenleteknek vannak hosszú bejegyzései, hanem a gyökerek is megtalálhatók a diszkriminánson keresztül. Összesen három új képlet van. Nem könnyű megjegyezni. Ez csak az ilyen egyenletek gyakori megoldása után lehetséges. Ezután az összes képlet magától emlékezni fog.

A másodfokú egyenlet általános képe

Itt az explicit jelölésüket javasoljuk, amikor először a legnagyobb fokozatot írják le, majd - csökkenő sorrendben. Gyakran vannak olyan helyzetek, amikor a kifejezések eltérnek egymástól. Ekkor érdemes átírni az egyenletet a változó mértéke szerinti csökkenő sorrendbe.

Vezessük be a jelölést. Ezeket az alábbi táblázat mutatja be.

Ha elfogadjuk ezeket a jelöléseket, akkor minden másodfokú egyenlet a következő jelölésre redukálódik.

Ráadásul az együttható a ≠ 0. Jelöljük ezt a képletet egyes számmal.

Amikor az egyenlet adott, nem világos, hogy hány gyök lesz a válaszban. Mert a három lehetőség egyike mindig lehetséges:

  • a megoldásnak két gyökere lesz;
  • a válasz egy szám lesz;
  • Az egyenletnek egyáltalán nincs gyökere.

És bár a döntés nem jár a végére, nehéz megérteni, hogy egy adott esetben melyik opció esik ki.

A másodfokú egyenletek rekordjainak típusai

A feladatoknak különböző bejegyzései lehetnek. Nem mindig úgy néznek ki, mint egy másodfokú egyenlet általános képlete. Néha hiányozni fog néhány kifejezés. A fentebb leírtak a teljes egyenlet. Ha eltávolítja belőle a második vagy harmadik kifejezést, akkor valami mást kap. Ezeket a rekordokat másodfokú egyenleteknek is nevezik, csak hiányosak.

Ráadásul csak azok a kifejezések tűnhetnek el, amelyekre a „b” és „c” együtthatók. Az "a" szám semmilyen körülmények között nem lehet egyenlő nullával. Mert ebben az esetben a képlet azzá válik lineáris egyenlet. Az egyenletek hiányos alakjának képletei a következők lesznek:

Tehát csak két típusa van, a teljesek mellett vannak hiányos másodfokú egyenletek is. Legyen az első képlet kettes, a második pedig három.

A diszkrimináns és a gyökök számának az értékétől való függése

Ezt a számot ismerni kell az egyenlet gyökereinek kiszámításához. Mindig ki lehet számítani, függetlenül attól, hogy milyen képletű a másodfokú egyenlet. A diszkrimináns kiszámításához az alább írt egyenlőséget kell használni, amely négyes számmal rendelkezik.

Miután behelyettesítette az együtthatók értékét ebbe a képletbe, számokat kaphat különböző jelek. Ha a válasz igen, akkor az egyenletre adott válasz két különböző gyök lesz. Negatív szám esetén a másodfokú egyenlet gyökei hiányoznak. Ha egyenlő nullával, a válasz egy lesz.

Hogyan oldható meg a teljes másodfokú egyenlet?

Valójában ennek a kérdésnek a vizsgálata már megkezdődött. Mert először meg kell találni a diszkriminánst. Miután tisztáztuk, hogy a másodfokú egyenletnek vannak gyökei, és a számuk ismert, a változók képleteit kell használni. Ha két gyökér van, akkor ilyen képletet kell alkalmaznia.

Mivel a „±” jelet tartalmazza, két érték lesz. A négyzetgyök jel alatti kifejezés a diszkrimináns. Ezért a képlet más módon is átírható.

Forma öt. Ugyanabból a rekordból látható, hogy ha a diszkrimináns nulla, akkor mindkét gyök ugyanazt az értéket veszi fel.

Ha a másodfokú egyenletek megoldását még nem dolgozták ki, akkor jobb, ha felírja az összes együttható értékét a diszkrimináns és változó képletek alkalmazása előtt. Később ez a pillanat nem okoz nehézségeket. De a legelején zavar van.

Hogyan lehet megoldani egy nem teljes másodfokú egyenletet?

Itt minden sokkal egyszerűbb. Még nincs szükség további képletekre. És nem lesz szükséged azokra, amelyeket már megírtak a megkülönböztetőnek és az ismeretlennek.

Először nézzük meg a kettes számú hiányos egyenletet. Ebben az egyenlőségben az ismeretlen értéket ki kell venni a zárójelből, és megoldani a lineáris egyenletet, amely a zárójelben marad. A válasznak két gyökere lesz. Az első szükségszerűen egyenlő nullával, mert van egy tényező, amely magából a változóból áll. A másodikat egy lineáris egyenlet megoldásával kapjuk.

A hármas számú hiányos egyenletet úgy oldjuk meg, hogy a számot az egyenlet bal oldaláról jobbra helyezzük át. Ezután el kell osztania az ismeretlen előtti együtthatóval. Csak a négyzetgyök kinyerése marad hátra, és ne felejtse el kétszer leírni ellentétes előjelekkel.

Az alábbiakban felsorolunk néhány műveletet, amelyek segítenek megtanulni, hogyan kell megoldani mindenféle másodfokú egyenletté alakuló egyenlőséget. Segítenek a tanulónak elkerülni a figyelmetlenségből fakadó hibákat. Ezek a hiányosságok a rossz osztályzatok okai a kiterjedt "Negyedik egyenletek (8. osztály)" témakör tanulmányozása során. Ezt követően ezeket a műveleteket nem kell folyamatosan végrehajtani. Mert lesz egy stabil szokás.

  • Először meg kell írni az egyenletet szabványos formában. Vagyis először a változó legnagyobb fokával rendelkező tagot, majd - fokszám és utolsó nélkül - csak egy számot.
  • Ha egy mínusz jelenik meg az "a" együttható előtt, akkor ez megnehezítheti a kezdő másodfokú egyenletek tanulmányozását. Jobb megszabadulni tőle. Ebből a célból minden egyenlőséget meg kell szorozni "-1"-gyel. Ez azt jelenti, hogy minden kifejezés előjelét az ellenkezőjére váltja.
  • Ugyanígy ajánlott megszabadulni a frakcióktól. Egyszerűen szorozza meg az egyenletet a megfelelő tényezővel, hogy a nevezők érvénytelenítsék.

Példák

A következő másodfokú egyenleteket kell megoldani:

x 2 - 7x \u003d 0;

15 - 2x - x 2 \u003d 0;

x 2 + 8 + 3x = 0;

12x + x 2 + 36 = 0;

(x+1) 2 + x + 1 = (x+1) (x+2).

Az első egyenlet: x 2 - 7x \u003d 0. Hiányos, ezért a kettes számú képletnél leírtak szerint van megoldva.

A zárójelezés után kiderül: x (x - 7) \u003d 0.

Az első gyök a következő értéket veszi fel: x 1 \u003d 0. A második a lineáris egyenletből lesz megtalálható: x - 7 \u003d 0. Könnyen belátható, hogy x 2 = 7.

Második egyenlet: 5x2 + 30 = 0. Ismét hiányos. Csak a harmadik képletnél leírtak szerint van megoldva.

30 áthelyezése után jobb oldal egyenlőség: 5x 2 = 30. Most 5-tel kell osztani. Kiderül: x 2 = 6. A válaszok számok lesznek: x 1 = √6, x 2 = - √6.

Harmadik egyenlet: 15 - 2x - x 2 \u003d 0. Itt és lent a másodfokú egyenletek megoldása úgy kezdődik, hogy átírja őket egy szabványos alakba: - x 2 - 2x + 15 \u003d 0. Itt az ideje, hogy a másodikat használjuk hasznos tanácsokatés mindent megszorozunk mínusz eggyel. Kiderül, hogy x 2 + 2x - 15 \u003d 0. A negyedik képlet szerint ki kell számítania a diszkriminánst: D \u003d 2 2 - 4 * (- 15) \u003d 4 + 60 \u003d 64. pozitív szám. A fent elmondottakból kiderül, hogy az egyenletnek két gyökere van. Ezeket az ötödik képlet szerint kell kiszámítani. Eszerint kiderül, hogy x \u003d (-2 ± √64) / 2 \u003d (-2 ± 8) / 2. Ezután x 1 \u003d 3, x 2 \u003d - 5.

A negyedik x 2 + 8 + 3x \u003d 0 egyenletet a következőre alakítjuk: x 2 + 3x + 8 \u003d 0. A diszkriminánsa egyenlő ezzel az értékkel: -23. Mivel ez a szám negatív, a feladat válasza a következő bejegyzés lesz: "Nincsenek gyökerek."

Az ötödik 12x + x 2 + 36 = 0 egyenletet a következőképpen kell átírni: x 2 + 12x + 36 = 0. A diszkrimináns képletének alkalmazása után a nulla számot kapjuk. Ez azt jelenti, hogy egy gyökér lesz, nevezetesen: x \u003d -12 / (2 * 1) \u003d -6.

A hatodik egyenlet (x + 1) 2 + x + 1 = (x + 1) (x + 2) transzformációkat igényel, amelyek abból állnak, hogy hasonló kifejezéseket kell hozni a zárójelek kinyitása előtt. Az első helyett egy ilyen kifejezés lesz: x 2 + 2x + 1. Az egyenlőség után ez a bejegyzés jelenik meg: x 2 + 3x + 2. A hasonló tagok megszámlálása után az egyenlet a következő formában jelenik meg: x 2 - x \u003d 0. Hiányos lett. Hasonlót már egy kicsit magasabbnak tekintettek. Ennek gyökerei a 0 és az 1 számok lesznek.

A másodfokú egyenlet problémáit is tanulmányozzuk iskolai tananyagés az egyetemeken. Ezek a * x ^ 2 + b * x + c \u003d 0 alakú egyenletek értendők, ahol x- változó, a,b,c – állandók; a<>0 . A probléma az egyenlet gyökereinek megtalálása.

A másodfokú egyenlet geometriai jelentése

A másodfokú egyenlettel ábrázolt függvény grafikonja parabola. A másodfokú egyenlet megoldásai (gyökei) a parabola és az x tengellyel való metszéspontok. Ebből következik, hogy három eset lehetséges:
1) a parabolának nincs metszéspontja az x tengellyel. Ez azt jelenti, hogy a felső síkban van ágakkal felfelé, vagy az alsó síkban lefelé ágakkal. Ilyen esetekben a másodfokú egyenletnek nincs valódi gyöke (két összetett gyöke van).

2) a parabolának van egy metszéspontja az Ox tengellyel. Az ilyen pontot a parabola csúcsának nevezzük, és a benne lévő másodfokú egyenlet elnyeri minimális vagy maximális értékét. Ebben az esetben a másodfokú egyenletnek egy valós gyöke (vagy két azonos gyöke) van.

3) Az utolsó eset a gyakorlatban érdekesebb - a parabolának két metszéspontja van az abszcissza tengellyel. Ez azt jelenti, hogy az egyenletnek két valódi gyöke van.

A változók hatványaihoz tartozó együtthatók elemzése alapján érdekes következtetések vonhatók le a parabola elhelyezéséről.

1) Ha az a együttható nullánál nagyobb, akkor a parabola felfelé, ha negatív, akkor a parabola ágai lefelé irányulnak.

2) Ha a b együttható nullánál nagyobb, akkor a parabola csúcsa a bal oldali félsíkban, ha negatív értéket vesz fel, akkor a jobb oldalon.

Másodfokú egyenlet megoldására szolgáló képlet levezetése

Vigyük át az állandót a másodfokú egyenletből

egyenlőségjelre a kifejezést kapjuk

Mindkét oldalt megszorozzuk 4a-val

Ha teljes négyzetet szeretne kapni a bal oldalon, adjon hozzá b ^ 2-t mindkét részhez, és hajtsa végre az átalakítást

Innen találjuk

A diszkrimináns képlete és a másodfokú egyenlet gyökei

A diszkrimináns a gyökkifejezés értéke, ha pozitív, akkor az egyenletnek két valós gyöke van, a képlettel számolva Nulla diszkrimináns esetén a másodfokú egyenletnek egy megoldása van (két egybeeső gyöke), ami könnyen megkapható a fenti képletből D=0 esetén negatív diszkrimináns nincs igazi gyökegyenlet. Azonban a másodfokú egyenlet megoldásainak komplex síkban történő tanulmányozása és értékük kiszámítása a képlettel történik

Vieta tétele

Tekintsünk egy másodfokú egyenlet két gyökerét, és ezek alapján alkossunk másodfokú egyenletet A jelölésből maga a Vieta-tétel is könnyen következik: ha megvan a forma másodfokú egyenlete. akkor gyökeinek összege egyenlő az ellenkező előjellel vett p együtthatóval, és az egyenlet gyökeinek szorzata egyenlő a q szabad taggal. A fenti képlet így fog kinézni. Ha a klasszikus egyenletben az a konstans nem nulla, akkor el kell osztania vele a teljes egyenletet, majd alkalmaznia kell a Vieta-tételt.

A másodfokú egyenlet ütemezése faktorokon

Legyen kitűzve a feladat: a másodfokú egyenlet faktorokra bontása. Ennek végrehajtásához először megoldjuk az egyenletet (keressük meg a gyököket). Ezután a talált gyököket behelyettesítjük a másodfokú egyenlet kibővítésére szolgáló képletbe, és ez a probléma megoldódik.

Feladatok másodfokú egyenlethez

1. feladat. Keresse meg a másodfokú egyenlet gyökereit!

x^2-26x+120=0 .

Megoldás: Írja fel az együtthatókat és helyettesítse be a diszkrimináns képletbe

Ennek az értéknek a gyöke 14, számológéppel könnyen megkereshető, vagy gyakori használat mellett megjegyezhető, azonban a kényelem kedvéért a cikk végén felsorolok egy listát azokról a számnégyzetekről, amelyek gyakran előfordulhatnak. megtalálható az ilyen feladatokban.
A talált értéket a rendszer behelyettesíti a gyökképletbe

és megkapjuk

2. feladat. oldja meg az egyenletet

2x2+x-3=0.

Megoldás: Van egy teljes másodfokú egyenletünk, írjuk ki az együtthatókat és keressük meg a diszkriminánst


Ismert képletek segítségével megtaláljuk a másodfokú egyenlet gyökereit

3. feladat. oldja meg az egyenletet

9x2 -12x+4=0.

Megoldás: Van egy teljes másodfokú egyenletünk. Határozza meg a diszkriminánst

Azt az esetet kaptuk, amikor a gyökerek egybeesnek. A gyökök értékeit a képlet alapján találjuk meg

4. feladat. oldja meg az egyenletet

x^2+x-6=0 .

Megoldás: Azokban az esetekben, ahol kicsi az együttható x-hez, célszerű a Vieta-tételt alkalmazni. Feltételével két egyenletet kapunk

A második feltételből azt kapjuk, hogy a szorzatnak -6-nak kell lennie. Ez azt jelenti, hogy az egyik gyökér negatív. A következő lehetséges megoldáspárunk van(-3;2), (3;-2) . Az első feltételt figyelembe véve a második megoldáspárt elutasítjuk.
Az egyenlet gyökerei a következők

5. feladat Határozza meg egy téglalap oldalainak hosszát, ha kerülete 18 cm, területe 77 cm 2!

Megoldás: Egy téglalap kerületének fele egyenlő a szomszédos oldalak összegével. Jelöljük x-et - a nagyobb oldalt, majd 18-x a kisebbik oldala. Egy téglalap területe egyenlő a következő hosszúságok szorzatával:
x(18x)=77;
vagy
x 2 -18x + 77 \u003d 0.
Keressük a diszkriminánst egyenletek

Kiszámoljuk az egyenlet gyökereit

Ha egy x=11, akkor 18x=7, fordítva is igaz (ha x=7, akkor 21-x=9).

6. feladat Tényezőzzük a másodfokú 10x 2 -11x+3=0 egyenletet!

Megoldás: Számítsa ki az egyenlet gyökereit, ehhez megtaláljuk a diszkriminánst

A talált értéket behelyettesítjük a gyökképletbe, és kiszámítjuk

Alkalmazzuk a másodfokú egyenlet gyökekkel való bővítésének képletét

A zárójeleket kibontva megkapjuk az azonosságot.

Másodfokú egyenlet paraméterrel

Példa 1. A paraméter mely értékeire a , az (a-3) x 2 + (3-a) x-1 / 4 \u003d 0 egyenletnek egy gyöke van?

Megoldás: Az a=3 érték közvetlen helyettesítésével azt látjuk, hogy nincs megoldása. Továbbá azt a tényt fogjuk használni, hogy nulla diszkrimináns esetén az egyenletnek a 2 multiplicitás egyik gyöke van. Írjuk ki a diszkriminánst

leegyszerűsítjük és egyenlővé kell tenni a nullával

Az a paraméterre vonatkozóan egy másodfokú egyenletet kaptunk, melynek megoldása a Vieta-tétel segítségével könnyen megkapható. A gyökök összege 7, szorzatuk 12. Egyszerű felsorolással megállapítjuk, hogy a 3.4 számok lesznek az egyenlet gyökei. Mivel a számítások elején már elvetettük az a=3 megoldást, az egyetlen helyes megoldás a következő lesz: a=4.Így a = 4 esetén az egyenletnek egy gyöke van.

Példa 2. A paraméter mely értékeire a , az egyenlet a(a+3)x^2+(2a+6)x-3a-9=0 egynél több gyökér van?

Megoldás: Tekintsük először a szinguláris pontokat, ezek az a=0 és a=-3 értékek lesznek. Ha a=0, az egyenlet 6x-9=0 alakra egyszerűsödik; x=3/2 és egy gyökér lesz. A= -3 esetén a 0=0 azonosságot kapjuk.
Számítsa ki a diszkriminánst!

és keresse meg a értékeit, amelyekre ez pozitív

Az első feltételből a>3-at kapunk. A másodikhoz megtaláljuk a diszkriminánst és az egyenlet gyökereit


Határozzuk meg az intervallumokat, ahol a függvény felveszi pozitív értékeket. Az a=0 pontot behelyettesítve azt kapjuk 3>0 . Tehát a (-3; 1/3) intervallumon kívül a függvény negatív. Ne felejtsd el a pontot a=0 amit ki kell zárni, mivel az eredeti egyenletnek egy gyöke van.
Ennek eredményeként két olyan intervallumot kapunk, amely kielégíti a probléma feltételét

A gyakorlatban sok hasonló feladat lesz, próbáljon meg maga is megbirkózni a feladatokkal, és ne felejtse el figyelembe venni az egymást kölcsönösen kizáró feltételeket. Tanulmányozza jól a másodfokú egyenletek megoldására szolgáló képleteket, gyakran van rájuk szükség a számításokban különféle problémákban és tudományokban.

Az egyenletek használata széles körben elterjedt életünkben. Számos számításnál, szerkezetek építésénél és még sportolásnál is használják. Az egyenleteket az ember ősidők óta használja, és azóta használatuk csak nőtt. A diszkrimináns segítségével bármilyen másodfokú egyenletet megoldhat általános képlet, amelynek a következő formája van:

A diszkrimináns képlet a polinom mértékétől függ. A fenti képlet a következő formájú másodfokú egyenletek megoldására alkalmas:

A diszkrimináns a következő tulajdonságokkal rendelkezik, amelyeket tudnia kell:

* "D" 0, ha a polinomnak több gyöke van (egyenlő gyöke);

* A "D" szimmetrikus polinom a polinom gyökéhez képest, ezért együtthatóiban polinom; ezen túlmenően ennek a polinomnak az együtthatói egész számok, függetlenül attól, hogy milyen kiterjesztéssel veszik fel a gyököket.

Tegyük fel, hogy a következő formájú másodfokú egyenletet kapjuk:

1 egyenlet

A képlet szerint a következőket kapjuk:

Mivel \, akkor az egyenletnek 2 gyöke van. Határozzuk meg őket:

Hol tudom megoldani az egyenletet a diszkrimináns online megoldón keresztül?

Az egyenletet a https: // weboldalunkon tudja megoldani. Az ingyenes online megoldó segítségével másodpercek alatt megoldhat bármilyen bonyolultságú online egyenletet. Csak annyit kell tennie, hogy beírja adatait a megoldóba. Weboldalunkon megtekintheti a videós útmutatót és megtanulhatja az egyenlet megoldását, és ha kérdése van, felteheti a Vkontakte csoportunkban http://vk.com/pocketteacher. Csatlakozz csoportunkhoz, mindig szívesen segítünk.

Dolgozzunk vele másodfokú egyenletek. Ezek nagyon népszerű egyenletek! Legáltalánosabb formájában a másodfokú egyenlet így néz ki:

Például:

Itt a =1; b = 3; c = -4

Itt a =2; b = -0,5; c = 2,2

Itt a =-3; b = 6; c = -18

Nos, érted az ötletet...

Hogyan lehet másodfokú egyenleteket megoldani? Ha van egy másodfokú egyenlete ebben a formában, akkor minden egyszerű. Emlékszünk Varázsszó diszkriminatív . Ritka középiskolás diák nem hallotta ezt a szót! A „dönts a megkülönböztetőn keresztül” kifejezés megnyugtató és megnyugtató. Mert nem kell várni a diszkrimináló trükkjére! Használata egyszerű és problémamentes. Tehát a másodfokú egyenlet gyökereinek megkeresésére szolgáló képlet így néz ki:

A gyökérjel alatti kifejezés ugyanaz diszkriminatív. Amint látja, az x megtalálásához használjuk csak a, b és c. Azok. együtthatók a másodfokú egyenletből. Csak óvatosan cserélje ki az értékeket a, b és c ebbe a képletbe, és fontolja meg. Helyettes a jeleiddel! Például az első egyenlethez a =1; b = 3; c= -4. Itt írjuk:

A példa majdnem megoldva:

Ez minden.

Milyen esetekben lehetséges ez a képlet? Csak három eset van.

1. A diszkrimináns pozitív. Ez azt jelenti, hogy kivonhatja belőle a gyökeret. Az egy másik kérdés, hogy a gyökeret jól vagy rosszul kinyerték-e ki. Fontos, hogy elvileg mit vonnak ki. Ekkor a másodfokú egyenletnek két gyöke van. Két különböző megoldás.

2. A diszkrimináns nulla. Akkor van egy megoldás. Szigorúan véve ez nem egyetlen gyökér, hanem két egyforma. Ez azonban szerepet játszik az egyenlőtlenségekben, ahol részletesebben megvizsgáljuk a kérdést.

3. A diszkrimináns negatív. Negatív számból Négyzetgyök nincs kivonva. Hát rendben. Ez azt jelenti, hogy nincsenek megoldások.

Minden nagyon egyszerű. És mit gondolsz, nem tévedhetsz? Hát igen, hogyan...
A leggyakoribb hibák az értékek összetévesztése a, b és c. Vagy inkább nem a jeleikkel (hol lehet összetéveszteni?), hanem a negatív értékek behelyettesítésével a gyökszámítási képletben. Itt a képlet részletes nyilvántartása adott számokkal menthető. Ha problémák vannak a számításokkal, akkor csináld!



Tegyük fel, hogy meg kell oldanunk a következő példát:

Itt a = -6; b = -5; c=-1

Tegyük fel, hogy tudja, hogy az első alkalommal ritkán kap választ.

Nos, ne légy lusta. 30 másodpercet vesz igénybe egy extra sor beírása és a hibák száma erősen csökkenni fog. Tehát részletesen írjuk, minden zárójellel és jellel:

Hihetetlenül nehéznek tűnik ilyen gondosan festeni. De csak úgy tűnik. Próbáld ki. Nos, vagy válassz. Melyik a jobb, gyors vagy jobb? Ráadásul boldoggá teszlek. Egy idő után nem kell mindent olyan gondosan festeni. Csak úgy fog kiderülni. Különösen, ha gyakorlati technikákat alkalmaz, amelyeket alább ismertetünk. Ez a rossz példa egy csomó mínuszokkal könnyen és hiba nélkül megoldható!

Így, hogyan kell megoldani a másodfokú egyenleteket a diszkrimináns révén, amelyre emlékeztünk. Vagy tanult, ami szintén jó. Tud-e helyesen azonosítani a, b és c. Tudod hogyan gondosan cserélje be őket a gyökérképletbe és gondosan számolja meg az eredményt. Megértetted ezt kulcsszó itt - gondosan?

A másodfokú egyenletek azonban gyakran kissé eltérően néznek ki. Például így:

azt hiányos másodfokú egyenletek . A diszkrimináns segítségével is megoldhatók. Csak helyesen kell kitalálnia, hogy mi egyenlő itt a, b és c.

Megvalósult? Az első példában a = 1; b = -4; a c? Egyáltalán nem létezik! Hát igen, ez így van. A matematikában ez azt jelenti c = 0 ! Ez minden. Helyettesítsd be a nullát a képletbe helyette c,és minden sikerülni fog nekünk. Hasonlóan a második példával is. Csak nulla nincs itt Val vel, a b !

De a nem teljes másodfokú egyenletek sokkal könnyebben megoldhatók. Mindenféle megkülönböztetés nélkül. Tekintsük az első hiányos egyenletet. Mit lehet tenni a bal oldalon? Az X-et kiveheti a zárójelből! Vegyük ki.

És mi van belőle? És az, hogy a szorzat akkor és csak akkor egyenlő nullával, ha bármelyik tényező nullával egyenlő! Nem hiszed? Nos, akkor jöjjön ki két nem nulla szám, amelyeket szorozva nullát adunk!
Nem működik? Valami...
Ezért bátran írhatjuk: x = 0, vagy x = 4

Minden. Ezek lesznek az egyenletünk gyökerei. Mindkettő passzol. Ha bármelyiket behelyettesítjük az eredeti egyenletbe, akkor a helyes azonosságot 0 = 0 kapjuk. Mint látható, a megoldás sokkal egyszerűbb, mint a diszkrimináns révén.

A második egyenlet is könnyen megoldható. 9-et mozgunk a jobb oldalra. Kapunk:

Marad a gyökér kivonása a 9-ből, és ennyi. Kap:

két gyökér is . x = +3 és x = -3.

Így oldódik meg az összes hiányos másodfokú egyenlet. Vagy úgy, hogy kiveszi az X-et a zárójelekből, vagy egyszerűen átviszi a számot jobbra, majd kivonja a gyökeret.
Rendkívül nehéz összekeverni ezeket a módszereket. Egyszerűen azért, mert az első esetben ki kell húzni a gyökeret az X-ből, ami valahogy érthetetlen, a második esetben pedig nincs mit kivenni a zárójelekből ...

Most vegye figyelembe azokat a gyakorlati technikákat, amelyek drámaian csökkentik a hibák számát. Pont azokat, amelyek a figyelmetlenségből fakadnak... Amiért aztán fájdalmas és sértő...

Első fogadás. Ne légy lusta, mielőtt megoldana egy másodfokú egyenletet standard nézet. Mit is jelent ez?
Tegyük fel, hogy bármilyen átalakítás után a következő egyenletet kapjuk:

Ne rohanjon megírni a gyökerek képletét! Szinte biztosan összekevered az esélyeket a, b és c.Építsd fel helyesen a példát. Először x négyzet, majd négyzet nélkül, majd szabad tag. Mint ez:

És még egyszer: ne rohanjon! Az x négyzet előtti mínusz nagyon felzaklathat. Elfelejteni könnyű... Szabadulj meg a mínusztól. Hogyan? Igen, ahogy az előző témában tanítottuk! Az egész egyenletet meg kell szoroznunk -1-gyel. Kapunk:

És most nyugodtan felírhatja a gyökök képletét, kiszámíthatja a diszkriminánst és kiegészítheti a példát. Döntse el egyedül. A 2-es és a -1-es gyökökhöz kell jutnia.

Második fogadás. Ellenőrizze a gyökereit! Vieta tétele szerint. Ne aggódj, mindent elmagyarázok! Ellenőrzés utolsó dolog az egyenlet. Azok. az, amivel felírtuk a gyökök képletét. Ha (mint ebben a példában) az együttható a = 1, ellenőrizze a gyökereket könnyen. Elég megsokszorozni őket. Szabad termet kellene kapnod, pl. esetünkben -2. Figyelj, ne 2, hanem -2! ingyenes tag a jeleddel . Ha nem sikerült, az azt jelenti, hogy már elrontották valahol. Keressen hibát. Ha sikerült, össze kell hajtania a gyökereket. Utolsó és utolsó ellenőrzés. Arány kellene b Val vel szemben jel. Esetünkben -1+2 = +1. Egy együttható b, amely az x előtt van, egyenlő -1-gyel. Szóval minden stimmel!
Kár, hogy csak olyan példáknál ilyen egyszerű, ahol x négyzet tiszta, együtthatóval a = 1. De legalább ellenőrizze az ilyen egyenleteket! Kevesebb lesz a hiba.

Fogadás harmadik. Ha az egyenletednek törtegyütthatói vannak, szabadulj meg a törtektől! Szorozzuk meg az egyenletet a közös nevezővel az előző részben leírtak szerint. Ha törtekkel dolgozik, a hibák valamilyen oknál fogva mászni ...

Egyébként egy gonosz példát ígértem egy rakás mínuszos leegyszerűsítés végett. Kérem! Itt van.

Annak érdekében, hogy ne keveredjünk össze a mínuszokban, megszorozzuk az egyenletet -1-gyel. Kapunk:

Ez minden! Dönteni szórakoztató!

Tehát ismételjük a témát.

Gyakorlati tippek:

1. Megoldás előtt a másodfokú egyenletet a standard formára hozzuk, felépítjük jobb.

2. Ha a négyzetben az x előtt van negatív együttható, akkor azt úgy szűrjük ki, hogy a teljes egyenletet -1-gyel megszorozzuk.

3. Ha az együtthatók törtek, akkor a törteket úgy távolítjuk el, hogy a teljes egyenletet megszorozzuk a megfelelő tényezővel.

4. Ha x négyzet tiszta, az együttható eggyel egyenlő, a megoldás könnyen ellenőrizhető Vieta tételével. Csináld!

Törtegyenletek. ODZ.

Folytatjuk az egyenletek elsajátítását. Már tudjuk, hogyan kell lineáris és másodfokú egyenletekkel dolgozni. Az utolsó nézet marad törtegyenletek. Vagy sokkal szilárdabbnak is nevezik őket - tört racionális egyenletek. Ez ugyanaz.

Törtegyenletek.

Ahogy a neve is sugallja, ezek az egyenletek szükségszerűen tartalmaznak törteket. De nem csak a törteket, hanem azokat a törteket, amelyeknek van a nevezőben ismeretlen. Legalábbis az egyikben. Például:

Hadd emlékeztesselek, ha csak a nevezőkben számok, ezek lineáris egyenletek.

Hogyan döntsünk törtegyenletek? Először is szabadulj meg a törtektől! Ezt követően az egyenlet leggyakrabban lineáris vagy másodfokúvá válik. És akkor tudjuk, mit tegyünk... Bizonyos esetekben ez identitássá válhat, például 5=5, vagy helytelen kifejezéssé, például 7=2. De ez ritkán történik meg. Az alábbiakban megemlítem.

De hogyan lehet megszabadulni a törtektől!? Nagyon egyszerű. Az összes azonos transzformáció alkalmazása.

Az egész egyenletet meg kell szoroznunk ugyanazzal a kifejezéssel. Hogy minden nevező csökkenjen! Minden azonnal könnyebb lesz. egy példával magyarázom. Tegyük fel, hogy meg kell oldanunk az egyenletet:

Hogyan tanították őket az általános iskolában? Mindent egy irányba viszünk át, közös nevezőre redukáljuk stb. Felejtsd el, hogyan lidércnyomás! Ezt kell tennie, amikor törtkifejezéseket ad hozzá vagy kivon. Vagy dolgozz az egyenlőtlenségekkel. Az egyenletekben pedig azonnal megszorozzuk mindkét részt egy kifejezéssel, amely lehetőséget ad az összes nevező csökkentésére (vagyis lényegében egy közös nevezőre). És mi ez a kifejezés?

A bal oldalon a nevező csökkentéséhez szoroznia kell x+2. A jobb oldalon pedig 2-vel kell szorozni, tehát az egyenletet meg kell szorozni 2 (x+2). Megszorozzuk:

Ez a törtek szokásos szorzása, de részletesen leírom:

Kérjük, vegye figyelembe, hogy még nem nyitom ki a zárójelet. (x + 2)! Tehát teljes egészében leírom:

A bal oldalon teljesen lecsökkent (x+2), jobb oldalon pedig 2. Igény szerint! Csökkentés után kapjuk lineáris az egyenlet:

Ezt az egyenletet bárki meg tudja oldani! x = 2.

Oldjunk meg egy másik, kicsit bonyolultabb példát:

Ha emlékszünk arra, hogy 3 = 3/1, és 2x = 2x/ 1 írható:

És ismét megszabadulunk attól, amit nem igazán szeretünk - a törtekből.

Látjuk, hogy a nevező x-szel való csökkentéséhez meg kell szorozni a törtet (x - 2). És az egységek nem jelentenek akadályt számunkra. Nos, szorozzuk. Összes bal oldali és összes jobb oldal:

Ismét zárójelek (x - 2) nem árulom el. A zárójel egészével dolgozom, mintha egy szám lenne! Ezt mindig meg kell tenni, különben semmi sem csökken.

Mélységes elégedettség érzésével vágunk (x - 2)és az egyenletet tört nélkül, vonalzóban kapjuk!

És most kinyitjuk a zárójeleket:

Hasonlókat adunk, mindent áthelyezünk a bal oldalra, és megkapjuk:

Klasszikus másodfokú egyenlet. De az előttünk álló mínusz nem jó. Mindig megszabadulhatsz tőle, ha -1-gyel szorozod vagy osztod. De ha alaposan megnézi a példát, észre fogja venni, hogy a legjobb, ha ezt az egyenletet elosztja -2-vel! Egy csapásra eltűnik a mínusz, szebbek lesznek az együtthatók! -2-vel osztjuk. A bal oldalon - kifejezésenként, a jobb oldalon - csak ossza el a nullát -2-vel, nullát, és kapja meg:

A diszkriminánson keresztül oldjuk meg és ellenőrizzük a Vieta-tétel szerint. Kapunk x=1 és x=3. Két gyökér.

Mint látható, az első esetben a transzformáció utáni egyenlet lineárissá vált, itt pedig másodfokú. Előfordul, hogy miután megszabadultunk a törtektől, minden x csökken. Maradt valami, például 5=5. Ez azt jelenti x bármi lehet. Bármi is legyen, akkor is csökkenni fog. És kapd meg a tiszta igazságot, 5=5. De miután megszabadultunk a törtektől, kiderülhet, hogy ez teljesen valótlan, például 2=7. Ez pedig azt jelenti nincsenek megoldások! Bármely x esetén hamisnak bizonyul.

Rájött fő út megoldásokat törtegyenletek ? Ez egyszerű és logikus. Megváltoztatjuk az eredeti kifejezést, hogy minden, ami nem tetszik, eltűnjön. Vagy beavatkozni. Ebben az esetben törtekről van szó. Mindenkivel ugyanezt fogjuk tenni összetett példák logaritmusokkal, szinuszokkal és egyéb borzalmakkal. Mi mindig megszabadulunk ettől az egésztől.

Az eredeti kifejezést azonban a szükséges irányba kell változtatnunk szabályok szerint, igen ... Amelynek fejlesztése a matematika vizsgára való felkészítés. Itt tanulunk.

Most megtanuljuk, hogyan lehet megkerülni az egyiket a fő lesek a vizsgán! De előbb lássuk, beleesik-e vagy sem?

Vegyünk egy egyszerű példát:

A dolog már ismerős, mindkét részt megszorozzuk (x - 2), kapunk:

Ne feledje, zárójelekkel (x - 2)úgy dolgozunk, mint egy, integrál kifejezéssel!

Itt már nem azt írtam a nevezőkbe, méltatlanul ... És nem húztam zárójelet a nevezőkbe, kivéve x - 2 nincs semmi, nem tudsz rajzolni. Lerövidítjük:

Kinyitjuk a zárójeleket, mindent balra mozgatunk, hasonlókat adunk:

Megoldjuk, ellenőrizzük, két gyökeret kapunk. x = 2és x = 3. Kiváló.

Tegyük fel, hogy a feladat azt mondja, hogy ha több gyökér van, írjuk fel a gyökért vagy azok összegét. Mit fogunk írni?

Ha úgy dönt, hogy a válasz 5, akkor Ön lesben álltak. És a feladat nem számít bele. Hiába dolgoztak... A helyes válasz a 3.

Mi a helyzet?! És megpróbálod ellenőrizni. Helyettesítsd be az ismeretlen értékeit eredeti példa. És ha at x = 3 minden csodálatosan összenő, 9 = 9-et kapunk, majd azzal x = 2 oszd el nullával! Amit végképp nem lehet megtenni. Eszközök x = 2 nem megoldás, és nem veszik figyelembe a válaszban. Ez az úgynevezett idegen vagy extra gyökér. Csak eldobjuk. Csak egy végső gyökér van. x = 3.

Hogy hogy?! Felháborodott felkiáltásokat hallok. Azt tanították nekünk, hogy egy egyenletet meg lehet szorozni egy kifejezéssel! Ez ugyanaz az átalakulás!

Igen, azonos. Kis feltétel mellett - a kifejezés, amellyel szorozunk (osztunk) - különbözik a nullától. DE x - 2 nál nél x = 2 egyenlő nullával! Szóval minden igazságos.

És most mit tehetek?! Ne szorozzon kifejezéssel? Minden alkalommal ellenőrzi? Megint homályos!

Nyugodtan! Semmi pánik!

Ebben a nehéz helyzetben három varázslevél ment meg minket. Tudom, mire gondoltál. Helyesen! azt ODZ . Érvényes értékek területe.

Tetszett a cikk? Oszd meg