Kontakty

Nájdite oblasť ohraničenú čiarami. Ako vypočítať plochu rovinného útvaru pomocou dvojitého integrálu

Úloha číslo 3. Vytvorte nákres a vypočítajte plochu figúry ohraničenú čiarami

Aplikácia integrálu na riešenie aplikovaných problémov

Výpočet plochy

Určitý integrál spojitej nezápornej funkcie f(x) sa numericky rovná oblasť krivočiareho lichobežníka ohraničeného krivkou y \u003d f (x), osou O x a priamkami x \u003d a a x \u003d b. V súlade s tým je vzorec oblasti napísaný takto:

Zvážte niekoľko príkladov výpočtu plôch rovinných útvarov.

Úloha číslo 1. Vypočítajte plochu, ohraničené čiarami y \u003d x 2 +1, y \u003d 0, x \u003d 0, x \u003d 2.

Riešenie. Zostavme postavu, ktorej plochu budeme musieť vypočítať.

y \u003d x 2 + 1 je parabola, ktorej vetvy smerujú nahor a parabola je posunutá nahor o jednu jednotku vzhľadom na os O y (obrázok 1).

Obrázok 1. Graf funkcie y = x 2 + 1

Úloha číslo 2. Vypočítajte plochu ohraničenú čiarami y \u003d x 2 - 1, y \u003d 0 v rozsahu od 0 do 1.


Riešenie. Grafom tejto funkcie je parabola vetvy, ktorá smeruje nahor, pričom parabola je voči osi O y posunutá nadol o jednu jednotku (obrázok 2).

Obrázok 2. Graf funkcie y \u003d x 2 - 1


Úloha číslo 3. Vytvorte nákres a vypočítajte plochu figúry ohraničenú čiarami

y = 8 + 2x - x 2 a y = 2x - 4.

Riešenie. Prvá z týchto dvoch čiar je parabola s vetvami smerujúcimi nadol, pretože koeficient na x 2 je záporný, a druhá čiara je priamka pretínajúca obe súradnicové osi.

Na zostrojenie paraboly nájdime súradnice jej vrcholu: y'=2 – 2x; 2 – 2x = 0, x = 1 – vrchol x os; y(1) = 8 + 2∙1 – 1 2 = 9 je jeho ordináta, N(1;9) je jeho vrchol.

Teraz nájdeme priesečníky paraboly a priamky riešením sústavy rovníc:

Vyrovnanie pravých strán rovnice, ktorej ľavé strany sú rovnaké.

Získame 8 + 2x - x 2 \u003d 2x - 4 alebo x 2 - 12 \u003d 0, odkiaľ .

Body sú teda priesečníky paraboly a priamky (obrázok 1).


Obrázok 3 Grafy funkcií y = 8 + 2x – x 2 a y = 2x – 4

Zostrojme priamku y = 2x - 4. Prechádza bodmi (0;-4), (2; 0) na súradnicových osiach.

Na zostavenie paraboly môžete mať aj jej priesečníky s osou 0x, teda korene rovnice 8 + 2x - x 2 = 0 alebo x 2 - 2x - 8 = 0. Podľa Vietovej vety je to ľahko nájsť jeho korene: x 1 = 2, x 2 = štyri.

Obrázok 3 zobrazuje obrazec (parabolický segment M1N M2) ohraničený týmito čiarami.

Druhou časťou problému je nájsť oblasť tohto obrázku. Jeho obsah možno nájsť pomocou určitého integrálu pomocou vzorca .

Aplikovaný na tento stav, dostaneme integrál:

2 Výpočet objemu rotačného telesa

Objem tela získaný z rotácie krivky y \u003d f (x) okolo osi O x sa vypočíta podľa vzorca:

Pri otáčaní okolo osi Oy vzorec vyzerá takto:

Úloha číslo 4. Určte objem tela získaného rotáciou krivočiareho lichobežníka ohraničeného priamkami x \u003d 0 x \u003d 3 a krivkou y \u003d okolo osi O x.

Riešenie. Zostavme výkres (obrázok 4).

Obrázok 4. Graf funkcie y =

Požadovaný objem sa rovná


Úloha číslo 5. Vypočítajte objem telesa získaný rotáciou krivočiareho lichobežníka ohraničeného krivkou y = x 2 a priamkami y = 0 a y = 4 okolo osi O y .

Riešenie. Máme:

Kontrolné otázky

Ako vložiť matematické vzorce na stránku?

Ak niekedy potrebujete pridať jeden alebo dva matematické vzorce na webovú stránku, najjednoduchší spôsob, ako to urobiť, je popísaný v článku: matematické vzorce sa jednoducho vložia na stránku vo forme obrázkov, ktoré Wolfram Alpha automaticky generuje. Táto univerzálna metóda okrem jednoduchosti pomôže zlepšiť viditeľnosť stránky vo vyhľadávačoch. Funguje to už dlho (a myslím si, že bude fungovať navždy), ale je morálne zastarané.

Ak na svojej stránke neustále používate matematické vzorce, potom vám odporúčam použiť MathJax, špeciálnu knižnicu JavaScript, ktorá zobrazuje matematický zápis vo webových prehliadačoch pomocou značiek MathML, LaTeX alebo ASCIIMathML.

Existujú dva spôsoby, ako začať používať MathJax: (1) pomocou jednoduchého kódu môžete rýchlo pripojiť skript MathJax na vašu stránku, ktorý sa automaticky načíta zo vzdialeného servera v správnom čase (zoznam serverov); (2) nahrajte skript MathJax zo vzdialeného servera na váš server a pripojte ho ku všetkým stránkam vášho webu. Druhý spôsob je zložitejší a časovo náročnejší a umožní vám zrýchliť načítavanie stránok vášho webu a ak sa materský server MathJax stane z nejakého dôvodu dočasne nedostupným, nijako to neovplyvní vašu vlastnú stránku. Napriek týmto výhodám som zvolil prvý spôsob, keďže je jednoduchší, rýchlejší a nevyžaduje technické zručnosti. Nasledujte môj príklad a do 5 minút budete môcť na svojej stránke využívať všetky funkcie MathJax.

Skript knižnice MathJax môžete pripojiť zo vzdialeného servera pomocou dvoch možností kódu prevzatých z hlavnej webovej stránky MathJax alebo zo stránky dokumentácie:

Jednu z týchto možností kódu je potrebné skopírovať a vložiť do kódu vašej webovej stránky, najlepšie medzi značky a alebo hneď za značkou . Podľa prvej možnosti sa MathJax načítava rýchlejšie a menej spomaľuje stránku. Ale druhá možnosť automaticky sleduje a načítava najnovšie verzie MathJax. Ak vložíte prvý kód, bude potrebné ho pravidelne aktualizovať. Ak prilepíte druhý kód, stránky sa budú načítavať pomalšie, ale nebudete musieť neustále sledovať aktualizácie MathJax.

Najjednoduchší spôsob pripojenia MathJax je v službe Blogger alebo WordPress: na ovládacom paneli lokality pridajte miniaplikáciu určenú na vkladanie kódu JavaScript tretej strany, skopírujte do nej prvú alebo druhú verziu načítacieho kódu a umiestnite miniaplikáciu bližšie k začiatok šablóny (mimochodom, nie je to vôbec potrebné, pretože skript MathJax sa načítava asynchrónne). To je všetko. Teraz sa naučte syntax značiek MathML, LaTeX a ASCIIMathML a ste pripravení vložiť matematické vzorce do svojich webových stránok.

Akýkoľvek fraktál je postavený na isté pravidlo, ktorý sa postupne aplikuje neobmedzený počet krát. Každý takýto čas sa nazýva iterácia.

Iteračný algoritmus na zostavenie Mengerovej špongie je celkom jednoduchý: pôvodná kocka so stranou 1 je rozdelená rovinami rovnobežnými s jej plochami na 27 rovnakých kociek. Odstráni sa z nej jedna centrálna kocka a 6 kociek, ktoré k nej priliehajú pozdĺž plôch. Vznikne sada pozostávajúca z 20 zostávajúcich menších kociek. Ak urobíme to isté s každou z týchto kociek, dostaneme súpravu pozostávajúcu zo 400 menších kociek. Pokračujúc v tomto procese donekonečna, dostaneme Mengerovu špongiu.

a)

Riešenie.

Najprv a rozhodujúci bod riešenia - zostavenie výkresu.

Urobme si kresbu:

Rovnica y=0 nastavuje os x;

- x = -2 a x=1 - rovný, rovnobežný s osou OU;

- y \u003d x 2 +2 - parabola, ktorej vetvy smerujú nahor, s vrcholom v bode (0;2).

Komentujte. Na zostrojenie paraboly stačí nájsť body jej priesečníka so súradnicovými osami, t.j. uvedenie x=0 nájsť priesečník s osou OU a rozhodovanie o vhodnom kvadratická rovnica, nájdite priesečník s osou Oh .

Vrchol paraboly možno nájsť pomocou vzorcov:

Môžete kresliť čiary a bod po bode.

Na intervale [-2;1] graf funkcie y=x2+2 Nachádza cez os Vôl , preto:

odpoveď: S \u003d 9 štvorcových jednotiek

Po dokončení úlohy je vždy užitočné pozrieť sa na výkres a zistiť, či je odpoveď skutočná. V tomto prípade "od oka" počítame počet buniek na výkrese - dobre, asi 9 bude napísaných, zdá sa, že je to pravda. Je celkom jasné, že ak by sme mali povedzme odpoveď: 20 štvorcových jednotiek, potom sa evidentne niekde stala chyba - 20 buniek sa jednoznačne nezmestí do predmetného čísla, maximálne tucet. Ak bola odpoveď záporná, úloha bola tiež vyriešená nesprávne.

Čo robiť, ak sa nachádza krivočiary lichobežník pod nápravou Oh?

b) Vypočítajte plochu obrázku ohraničenú čiarami y=-e x , x=1 a súradnicové osi.

Riešenie.

Urobme si kresbu.

Ak krivočiary lichobežník úplne pod nápravou Oh , potom jeho oblasť možno nájsť podľa vzorca:

odpoveď: S=(e-1) sq. unit" 1,72 sq. unit

Pozor! Nezamieňajte si tieto dva typy úloh:

1) Ak ste požiadaní, aby ste vyriešili len určitý integrál bez akéhokoľvek geometrického významu, potom môže byť záporný.

2) Ak ste požiadaní, aby ste našli plochu obrazca pomocou určitého integrálu, potom je plocha vždy kladná! Preto sa v práve uvažovanom vzorci objavuje mínus.

V praxi sa najčastejšie postava nachádza v hornej aj dolnej polrovine.

s) Nájsť oblasť plochá postava ohraničené čiarami y \u003d 2x-x 2, y \u003d -x.

Riešenie.

Najprv musíte urobiť kresbu. Všeobecne povedané, pri konštrukcii výkresu v plošných úlohách nás najviac zaujímajú priesečníky čiar. Nájdite priesečníky paraboly a priamy Dá sa to urobiť dvoma spôsobmi. Prvý spôsob je analytický.

Riešime rovnicu:

Čiže spodná hranica integrácie a=0 , horná hranica integrácie b = 3 .

Dané priamky postavíme: 1. Parabola - vrchol v bode (1;1); priesečník osí oh - body (0;0) a (0;2). 2. Priamka - os 2. a 4. súradnicového uhla. A teraz Pozor! Ak je v intervale [ a;b] nejaká nepretržitá funkcia f(x) väčší alebo rovný niektorým nepretržitá funkcia g(x), potom oblasť zodpovedajúceho obrázku možno nájsť podľa vzorca: .


A nezáleží na tom, kde sa obrázok nachádza - nad osou alebo pod osou, ale je dôležité, ktorý graf je VYŠŠÍ (v porovnaní s iným grafom) a ktorý je POD. V uvažovanom príklade je zrejmé, že na segmente sa parabola nachádza nad priamkou, a preto je potrebné odpočítať od

Je možné konštruovať čiary bod po bode, pričom hranice integrácie sa zisťujú akoby „sami od seba“. Analytická metóda hľadania limitov sa však stále niekedy musí použiť, ak je napríklad graf dostatočne veľký alebo závitová konštrukcia neodhalila limity integrácie (môžu byť zlomkové alebo iracionálne).

Požadovaný údaj je ohraničený parabolou zhora a priamkou zdola.

Na segmente , podľa zodpovedajúceho vzorca:

odpoveď: S \u003d 4,5 štvorcových jednotiek

Úloha 1(o výpočte plochy krivočiareho lichobežníka).

V karteziánskom pravouhlom súradnicovom systéme xOy je uvedený údaj (pozri obrázok) ohraničený osou x, priamkami x \u003d a, x \u003d b (krivkový lichobežník. Je potrebné vypočítať plochu \ krivočiary lichobežník.
Riešenie. Geometria nám dáva recepty na výpočet plôch mnohouholníkov a niektorých častí kruhu (sektor, segment). Pomocou geometrických úvah budeme schopní nájsť len približnú hodnotu požadovanej plochy, pričom argumentujeme nasledovne.

Rozdeľme segment [a; b] (základňa krivočiareho lichobežníka) na n rovnakých dielov; toto rozdelenie je realizovateľné pomocou bodov x 1 , x 2 , ... x k , ... x n-1 . Nakreslite čiary cez tieto body rovnobežné s osou y. Potom sa daný krivočiary lichobežník rozdelí na n častí, na n úzkych stĺpikov. Plocha celého lichobežníka sa rovná súčtu plôch stĺpcov.

Uvažujme samostatne k-tý stĺpec, t.j. krivočiary lichobežník, ktorého základňou je segment. Nahradíme ho obdĺžnikom s rovnakou základňou a výškou rovnou f(x k) (pozri obrázok). Oblasť obdĺžnika je \(f(x_k) \cdot \Delta x_k \), kde \(\Delta x_k \) je dĺžka segmentu; je prirodzené považovať zostavený produkt za približnú hodnotu plochy k-tého stĺpca.

Ak teraz urobíme to isté so všetkými ostatnými stĺpcami, dospejeme k nasledovnému výsledku: plocha S daného krivočiareho lichobežníka sa približne rovná ploche S n stupňovitého útvaru zloženého z n obdĺžnikov (pozri obrázok):
\(S_n = f(x_0)\Delta x_0 + \bodky + f(x_k)\Delta x_k + \bodky + f(x_(n-1))\Delta x_(n-1) \)
V záujme jednotnosti zápisu tu uvažujeme, že a \u003d x 0, b \u003d x n; \(\Delta x_0 \) - dĺžka segmentu , \(\Delta x_1 \) - dĺžka segmentu atď.; zatiaľ čo, ako sme sa zhodli vyššie, \(\Delta x_0 = \bodky = \Delta x_(n-1) \)

Takže, \(S \približne S_n \), a táto približná rovnosť je tým presnejšia, čím je n väčšie.
Podľa definície sa predpokladá, že požadovaná oblasť krivočiareho lichobežníka sa rovná limitu sekvencie (S n):
$$ S = \lim_(n \to \infty) S_n $$

Úloha 2(o posunutí bodu)
Hmotný bod sa pohybuje po priamke. Závislosť rýchlosti od času vyjadruje vzorec v = v(t). Nájdite posunutie bodu za časový interval [a; b].
Riešenie. Ak by bol pohyb rovnomerný, potom by sa úloha riešila veľmi jednoducho: s = vt, t.j. s = v(b-a). Pre nerovnomerný pohyb treba použiť tie isté myšlienky, na ktorých bolo založené riešenie predchádzajúceho problému.
1) Rozdeľte časový interval [a; b] na n rovnakých častí.
2) Uvažujme časový interval a predpokladajme, že počas tohto časového intervalu bola rýchlosť konštantná, ako napríklad v čase t k . Takže predpokladáme, že v = v(t k).
3) Nájdite približnú hodnotu posunutia bodu za časový interval , túto približnú hodnotu označíme s k
\(s_k = v(t_k) \Delta t_k \)
4) Nájdite približnú hodnotu posunutia s:
\(s \približne S_n \) kde
\(S_n = s_0 + \bodky + s_(n-1) = v(t_0)\Delta t_0 + \bodky + v(t_(n-1)) \Delta t_(n-1) \)
5) Požadované posunutie sa rovná limitu postupnosti (S n):
$$ s = \lim_(n \to \infty) S_n $$

Poďme si to zhrnúť. Riešenia rôznych úloh boli zredukované na rovnaký matematický model. Mnohé problémy z rôznych oblastí vedy a techniky vedú v procese riešenia k rovnakému modelu. Takže tento matematický model by sa mal špeciálne študovať.

Pojem určitého integrálu

Uveďme matematický popis modelu, ktorý bol zostavený v troch uvažovaných úlohách pre funkciu y = f(x), ktorá je spojitá (ale nie nevyhnutne nezáporná, ako sa predpokladalo v uvažovaných úlohách) na segmente [ a; b]:
1) rozdeliť segment [a; b] na n rovnakých častí;
2) súčet $$ S_n = f(x_0)\Delta x_0 + f(x_1)\Delta x_1 + \bodky + f(x_(n-1))\Delta x_(n-1) $$
3) vypočítajte $$ \lim_(n \to \infty) S_n $$

V priebehu matematickej analýzy sa dokázalo, že táto limita existuje v prípade spojitej (alebo po častiach spojitej) funkcie. Volá sa určitý integrál funkcie y = f(x) cez segment [a; b] a sú označené takto:
\(\int\limits_a^b f(x) dx \)
Čísla a a b sa nazývajú hranice integrácie (dolné a horné).

Vráťme sa k vyššie uvedeným úlohám. Definícia oblasti uvedená v probléme 1 môže byť teraz prepísaná takto:
\(S = \int\limits_a^b f(x) dx \)
tu S je oblasť krivočiareho lichobežníka znázorneného na obrázku vyššie. To je čo geometrický zmysel určitý integrál.

Definíciu posunutia s bodu, ktorý sa pohybuje v priamom smere rýchlosťou v = v(t) v časovom intervale od t = a do t = b, uvedenú v úlohe 2, možno prepísať takto:

Newtonov - Leibnizov vzorec

Na začiatok si odpovedzme na otázku: aký je vzťah medzi určitým integrálom a primitívom?

Odpoveď možno nájsť v úlohe 2. Na jednej strane, posunutie s bodu, ktorý sa pohybuje po priamke rýchlosťou v = v(t) za časový interval od t = a do t = b, sa vypočíta ako vzorec
\(S = \int\limits_a^b v(t) dt \)

Na druhej strane súradnica pohybujúceho sa bodu je primitívom pre rýchlosť - označme ju s(t); preto posunutie s je vyjadrené vzorcom s = s(b) - s(a). V dôsledku toho dostaneme:
\(S = \int\limits_a^b v(t) dt = s(b)-s(a) \)
kde s(t) je primitívna derivácia pre v(t).

Nasledujúca veta bola dokázaná v priebehu matematickej analýzy.
Veta. Ak je funkcia y = f(x) spojitá na segmente [a; b], potom vzorec
\(S = \int\limits_a^b f(x) dx = F(b)-F(a) \)
kde F(x) je primitívna derivácia pre f(x).

Tento vzorec sa zvyčajne nazýva Newtonov-Leibnizov vzorec na počesť anglického fyzika Isaaca Newtona (1643-1727) a nemeckého filozofa Gottfrieda Leibniza (1646-1716), ktorí ho dostali nezávisle od seba a takmer súčasne.

V praxi namiesto písania F(b) - F(a) používajú zápis \(\left. F(x)\right|_a^b \) (niekedy je tzv. dvojitá substitúcia) a podľa toho prepíšte Newtonov-Leibnizov vzorec do tohto tvaru:
\(S = \int\limits_a^b f(x) dx = \vľavo. F(x)\vpravo|_a^b \)

Pri výpočte určitého integrálu najprv nájdite primitívnu deriváciu a potom vykonajte dvojitú substitúciu.

Na základe Newtonovho-Leibnizovho vzorca možno získať dve vlastnosti určitého integrálu.

Nehnuteľnosť 1. Integrál súčtu funkcií sa rovná súčtu integrálov:
\(\int\limits_a^b (f(x) + g(x))dx = \int\limits_a^b f(x)dx + \int\limits_a^b g(x)dx \)

Nehnuteľnosť 2. Konštantný faktor možno vyňať z integrálneho znamienka:
\(\int\limits_a^b kf(x)dx = k \int\limits_a^b f(x)dx \)

Výpočet plôch rovinných útvarov pomocou určitého integrálu

Pomocou integrálu môžete vypočítať plochu nielen krivočiarych lichobežníkov, ale aj plochých tvarov viac ako komplexný typ, ako je znázornené na obrázku. Obrazec P je ohraničený priamkami x = a, x = b a grafmi spojitých funkcií y = f(x), y = g(x) a na úsečke [a; b] platí nerovnosť \(g(x) \leq f(x) \). Na výpočet plochy S takéhoto obrázku budeme postupovať takto:
\(S = S_(ABCD) = S_(aDCb) - S_(aABb) = \int\limits_a^b f(x) dx - \int\limits_a^b g(x) dx = \)
\(= \int\limits_a^b (f(x)-g(x))dx \)

Takže plocha S obrázku ohraničená priamkami x = a, x = b a grafmi funkcií y = f(x), y = g(x), spojité na segmente a také, že pre ľubovoľné x od segment [a; b] nerovnosť \(g(x) \leq f(x) \) je splnená, vypočíta sa podľa vzorca
\(S = \int\limits_a^b (f(x)-g(x))dx \)

Tabuľka neurčitých integrálov (antiderivátov) niektorých funkcií

$$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac(x^(n+1))(n+1 ) +C \;\; (n \neq -1) $$ $$ \int \frac(1)(x) dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac(a^x)(\ln a) +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $ $ \int \frac(dx)(\cos^2 x) = \text(tg) x +C $$ $$ \int \frac(dx)(\sin^2 x) = -\text(ctg) x +C $$ $$ \int \frac(dx)(\sqrt(1-x^2)) = \text(arcsin) x +C $$ $$ \int \frac(dx)(1+x^2 ) = \text(arctg) x +C $$ $$ \int \text(ch) x dx = \text(sh) x +C $$ $$ \int \text(sh) x dx = \text(ch )x+C $$

Začneme uvažovať o samotnom procese výpočtu dvojitého integrálu a oboznámime sa s jeho geometrickým významom.

Dvojitý integrál sa číselne rovná ploche plochého útvaru (región integrácie). to najjednoduchšia forma dvojitý integrál, keď sa funkcia dvoch premenných rovná jednej: .

Najprv sa zamyslime nad problémom všeobecný pohľad. Teraz budete prekvapení, aké jednoduché to naozaj je! Vypočítajme plochu plochej postavy ohraničenú čiarami. Pre istotu predpokladáme, že na intervale . Plocha tohto obrázku sa číselne rovná:

Znázornime oblasť na výkrese:

Vyberme si prvý spôsob obídenia oblasti:

Touto cestou:

A hneď dôležitý technický trik: iterované integrály možno posudzovať samostatne. Najprv vnútorný integrál, potom vonkajší integrál. Táto metóda Vrelo odporúčame pre začiatočníkov v téme čajníky.

1) Vypočítajte vnútorný integrál, pričom integrácia sa vykonáva nad premennou "y":

Neurčitý integrál je tu najjednoduchší a potom sa používa banálny Newton-Leibnizov vzorec, len s tým rozdielom, že limitmi integrácie nie sú čísla, ale funkcie. Najprv sme dosadili hornú hranicu do „y“ (antiderivačná funkcia), potom dolnú hranicu

2) Výsledok získaný v prvom odseku musí byť dosadený do externého integrálu:

Kompaktnejší zápis celého riešenia vyzerá takto:

Výsledný vzorec - to je presne pracovný vzorec na výpočet plochy plochej postavy pomocou „obyčajného“ určitého integrálu! Pozri lekciu Výpočet plochy pomocou určitého integrálu, tam je na každom kroku!

teda problém výpočtu plochy pomocou dvojitého integrálu trochu inak z problému nájdenia oblasti pomocou určitého integrálu! V skutočnosti sú jedno a to isté!

Preto by nemali vzniknúť žiadne ťažkosti! Nebudem uvažovať o mnohých príkladoch, pretože ste sa s týmto problémom v skutočnosti opakovane stretli.

Príklad 9

Riešenie: Znázornime oblasť na výkrese:

Zvoľme nasledovné poradie prechodu regiónu:

Tu a nižšie sa nebudem zaoberať tým, ako prejsť oblasťou, pretože prvý odsek bol veľmi podrobný.

Touto cestou:

Ako som už poznamenal, pre začiatočníkov je lepšie počítať iterované integrály samostatne, budem dodržiavať rovnakú metódu:

1) Najprv sa pomocou Newtonovho-Leibnizovho vzorca zaoberáme vnútorným integrálom:

2) Výsledok získaný v prvom kroku sa dosadí do vonkajšieho integrálu:

Bod 2 je vlastne nájdenie plochy plochej postavy pomocou určitého integrálu.

odpoveď:

Tu je taká hlúpa a naivná úloha.

Zaujímavý príklad nezávislého riešenia:

Príklad 10

Pomocou dvojitého integrálu vypočítajte plochu rovinného útvaru ohraničeného priamkami , ,

Ukážka Ukážka dokončenie riešenia na konci hodiny.

V príkladoch 9-10 je oveľa výhodnejšie použiť prvý spôsob obchádzania územia, zvedaví čitatelia si mimochodom môžu zmeniť poradie obchvatu a vypočítať plochy druhým spôsobom. Ak neurobíte chybu, prirodzene sa získajú rovnaké hodnoty plochy.

V niektorých prípadoch je však efektívnejší druhý spôsob, ako obísť oblasť, a na záver kurzu mladého hlupáka sa pozrime na niekoľko ďalších príkladov na túto tému:

Príklad 11

Pomocou dvojitého integrálu vypočítajte plochu rovinného útvaru ohraničeného čiarami.

Riešenie: tešíme sa na dve paraboly s vánkom, ktoré ležia na boku. Netreba sa usmievať, s podobnými vecami vo viacerých integráloch sa stretávame často.

Aký je najjednoduchší spôsob, ako urobiť kresbu?

Predstavme si parabolu ako dve funkcie:
horná vetva a je spodnou vetvou.

Podobne si predstavte parabolu ako hornú a spodnú pobočky.

Ďalej, bodové vykresľovanie jednotiek, čo vedie k takémuto bizarnému obrázku:

Plocha obrázku sa vypočíta pomocou dvojitého integrálu podľa vzorca:

Čo sa stane, ak zvolíme prvý spôsob obídenia oblasti? Po prvé, táto oblasť bude musieť byť rozdelená na dve časti. A po druhé, uvidíme tento smutný obrázok: . Integrály, samozrejme, nie sú na superkomplexnej úrovni, ale ... hovorí staré matematické príslovie: kto je priateľský s koreňmi, nepotrebuje kompenzovanie.

Preto z nedorozumenia, ktoré je uvedené v podmienke, vyjadrujeme inverzné funkcie:

Inverzné funkcie v tomto príklade majú tú výhodu, že okamžite nastavia celú parabolu bez akýchkoľvek listov, žaluďov, konárov a koreňov.

Podľa druhej metódy bude prechod oblasti takýto:

Touto cestou:

Ako sa hovorí, cítiť rozdiel.

1) Zaoberáme sa vnútorným integrálom:

Výsledok dosadíme do vonkajšieho integrálu:

Integrácia nad premennou "y" by nemala byť trápna, ak by tam bolo písmeno "zyu" - bolo by skvelé nad ním integrovať. Hoci kto čítal druhý odsek lekcie Ako vypočítať objem rotačného telesa, s integráciou nad „y“ už nezažíva ani najmenšie rozpaky.

Venujte pozornosť aj prvému kroku: integrand je párny a segment integrácie je symetrický okolo nuly. Preto je možné segment rozdeliť na polovicu a výsledok môže byť dvojnásobný. Táto technika je v lekcii podrobne komentovaná. Efektívne metódy výpočet určitého integrálu.

Čo dodať…. Všetko!

odpoveď:

Ak chcete otestovať svoju integračnú techniku, môžete skúsiť vypočítať . Odpoveď by mala byť úplne rovnaká.

Príklad 12

Pomocou dvojitého integrálu vypočítajte plochu rovinného útvaru ohraničeného čiarami

Toto je príklad „urob si sám“. Je zaujímavé poznamenať, že ak sa pokúsite použiť prvý spôsob na obídenie oblasti, postava sa už nerozdelí na dve, ale na tri časti! A podľa toho dostaneme tri páry iterovaných integrálov. Niekedy sa to stane.

Majstrovská trieda sa skončila a je čas prejsť na úroveň veľmajstra - Ako vypočítať dvojitý integrál? Príklady riešení. V druhom článku sa budem snažiť nebyť taký maniak =)

Prajem vám úspech!

Riešenia a odpovede:

Príklad 2:Riešenie: Nakreslite oblasť na výkrese:

Zvoľme nasledovné poradie prechodu regiónu:

Touto cestou:
Prejdime k inverzným funkciám:


Touto cestou:
odpoveď:

Príklad 4:Riešenie: Prejdime k priamym funkciám:


Vykonajte kreslenie:

Zmeňme poradie prechodu oblasti:

odpoveď:

Páčil sa vám článok? Zdieľaj to